Cohomology of higher rank graphs and twisted k-graph C^*-algebras, an interim report.

Alex Kumjian1,2, David Pask2, Aidan Sims2

1University of Nevada, Reno

2University of Wollongong

Special session on Operator Algebras and Noncommutative Geometry
AustMS, University of Wollongong, 27 September 2011
We introduce the homology of a higher rank graph and discuss the corresponding cohomology.

Our definition of the homology of a k-graph Λ is modeled on Massey’s cubical singular homology (see [Mas91, §VII.2]).

It is equivalent to the homology of a cubical set as defined by Grandis (see [Gr05]).

We define the twisted C^*-algebra $C^*_\varphi(\Lambda)$ where φ is a \mathbb{T}-valued 2-cocycle.

All noncommutative tori may be realized as examples of this construction.

This is an interim report on joint work with David Pask and Aidan Sims of the University of Wollongong.
Definition (see [KP00])

Let Λ be a countable small category and let $d : \Lambda \to \mathbb{N}^k$ be a functor. Then (Λ, d) is a k-graph if it satisfies the factorization property:

For every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ such that

$$d(\lambda) = m + n$$

there exist unique $\mu, \nu \in \Lambda$ satisfying:

- $d(\mu) = m$ and $d(\nu) = n$,
- $\lambda = \mu \nu$.

Set $\Lambda^n := d^{-1}(n)$ and identify $\Lambda^0 = \text{Obj}(\Lambda)$, the set of vertices. An element $\lambda \in \Lambda^{e_i}$ is called an edge.
Remarks and Examples.

Let Λ be a k-graph.

- If $k = 0$, then d is trivial and Λ is just a set.
- If $k = 1$, then Λ is the path category of a directed graph.
- If $k \geq 2$, think of Λ as generated by k graphs of different colors that share the same set of vertices Λ^0.

Commuting squares form an essential piece of structure for $k \geq 2$.

Let C_m denote the directed cycle with m vertices viewed as a 1-graph.

Example of a 2-graph: Only the morphisms of minimal degree, Λ^{e_1} and Λ^{e_2}, are shown.

![Diagram](attachment:diagram.png)

Note that $\Lambda \cong C_2 \times C_1$.
More examples

The k-graph $T_k := \mathbb{N}^k$ is regarded as the k-graph analog of a torus.

Here is a simple k-graph with an infinite number of vertices:

$$\Delta_k := \{(m, n) \in \mathbb{Z}^k \times \mathbb{Z}^k \mid m \leq n\}$$

with structure maps

$$s(m, n) = n$$
$$r(m, n) = m$$
$$d(m, n) = n - m$$
$$(\ell, n) = (\ell, m)(m, n).$$

This may be regarded as the k-graph analog of Euclidean space.
Cubes and Faces.

Let Λ be a k-graph. For $0 \leq n \leq k$, an element $\lambda \in \Lambda$ with

$$d(\lambda) = e_{i_1} + \cdots + e_{i_n} \quad \text{where} \quad i_1 < \cdots < i_n$$

is called an n-cube. Let $Q_n(\Lambda)$ denote the set of n-cubes.

Note that 0-cubes are vertices and 1-cubes are edges.

For $n < 0$ or $n > k$ set $Q_n(\Lambda) = \emptyset$.

Let $\lambda \in Q_n(\Lambda)$. We define the faces $F^0_j(\lambda), F^1_j(\lambda) \in Q_{n-1}(\Lambda)$, where $1 \leq j \leq n$, to be the unique elements such that

$$\lambda = F^0_j(\lambda)\lambda_0 = \lambda_1 F^1_j(\lambda)$$

where $d(\lambda_\ell) = e_{i_j}$ for $\ell = 0, 1$.

Fact: If $i < j$, then $F^\ell_i \circ F^m_j = F^m_{j-1} \circ F^\ell_i$.
Homology complex.

For $1 \leq n \leq k$ define $\partial_n : \mathbb{Z}Q_n(\Lambda) \rightarrow \mathbb{Z}Q_{n-1}(\Lambda)$ such that for $\lambda \in Q_n(\Lambda)$

$$\partial_n(\lambda) = \sum_{j=1}^{n} \sum_{\ell=0}^{1} (-1)^{j+\ell} F_{j}^{\ell}(\lambda).$$

It is straightforward to show that $\partial_{n-1} \circ \partial_n = 0$.

Hence, $(\mathbb{Z}Q_*(\Lambda), \partial_*)$ is a complex and we define the homology of Λ by

$$H_n(\Lambda) = \ker \partial_n / \text{Im} \partial_{n+1}.$$

The assignment $\Lambda \mapsto H_*(\Lambda)$ is a covariant functor.

Example: Recall that C_m is a cycle with m vertices. One may check that

$$H_n(C_m) \cong \begin{cases} \mathbb{Z} & \text{if } n = 0, 1 \\ 0 & \text{otherwise.} \end{cases}$$
The Künne'sh Theorem.

Using basic homological algebra one may prove:

Theorem (Künne'sh Formula)

Let Λ_i be a k_i-graph for $i = 1, 2$. For $n \geq 0$ there is an exact sequence:

$$0 \to \sum_{m_1 + m_2 = n} H_{m_1}(\Lambda_1) \otimes H_{m_2}(\Lambda_2) \xrightarrow{\alpha} H_n(\Lambda_1 \times \Lambda_2) \xrightarrow{\beta} \sum_{m_1 + m_2 = n-1} \text{Tor}(H_{m_1}(\Lambda_1), H_{m_2}(\Lambda_2)) \to 0.$$

Let Λ be the 2-graph example above and recall that $\Lambda \cong C_2 \times C_1$.

By the Künne'sh Theorem we have

$$H_0(\Lambda) \cong \mathbb{Z}, \quad H_1(\Lambda) \cong \mathbb{Z}^2, \quad H_2(\Lambda) \cong \mathbb{Z}.$$
Acyclic k-graphs and free actions.

A k-graph Λ is said to be *acyclic* if $H_0(\Lambda) \cong \mathbb{Z}$ and $H_n(\Lambda) = 0$ for $n > 0$. It is easy to show that Δ_k is acyclic.

Theorem

Let Λ be an acyclic k-graph and suppose that there is a free action of the group G on Λ. Then for each $n \geq 0$ there is an isomorphism:

$$H_n(\Lambda/G) \cong H_n(G).$$

Example. Take $\Lambda = \Delta_k$ and let $G = \mathbb{Z}^k$ act on Δ_k by translation.

We have $\Delta_k/\mathbb{Z}^k \cong T_k$ and so

$$H_n(T_k) \cong H_n(\mathbb{Z}^k) \cong \mathbb{Z}^{(k)}_n.$$

Of course, this also follows by the Künneth Theorem.
Cohomology.

Let Λ be a k-graph and let A be an abelian group. For $n \in \mathbb{N}$ set

$$C^n(\Lambda, A) = \text{Hom}(\mathbb{Z}Q_n(\Lambda), A)$$

and define

$$\delta^n : C^n(\Lambda, A) \to C^{n+1}(\Lambda, A) \quad \text{by} \quad \delta^n(\varphi) = \varphi \circ \partial_{n+1}.$$

It is straightforward to show that $(C^*(\Lambda, A), \delta^*)$ is a complex.

We define the cohomology of Λ by

$$H^n(\Lambda, A) := Z^n(\Lambda, A)/B^n(\Lambda, A),$$

where $Z^n(\Lambda, A) := \ker \delta^n$ and $B^n(\Lambda, A) := \text{Im} \delta^{n-1}$.

Note $\Lambda \mapsto H^*(\Lambda, A)$ is a contravariant functor (it is covariant in A).
The UCT and a long exact sequence.

Theorem (Universal Coefficient Theorem)

Let \(\Lambda \) be a \(k \)-graph and let \(A \) be an abelian group. Then for \(n \geq 0 \), there is a short exact sequence

\[
0 \to \text{Ext}(H_{n-1}(\Lambda), A) \to H^n(\Lambda, A) \to \text{Hom}(H_n(\Lambda), A) \to 0.
\]

By a standard argument, a short exact sequence of coefficient groups

\[
0 \to A \to B \to C \to 0
\]

gives rise to a long exact sequence

\[
0 \to H^0(\Lambda, A) \to H^0(\Lambda, B) \to H^0(\Lambda, C) \to H^1(\Lambda, A) \to \cdots
\]
\[
\cdots \to H^{n-1}(\Lambda, C) \to H^n(\Lambda, A) \to H^n(\Lambda, B) \to H^n(\Lambda, C) \to \cdots
\]
The C^*-algebra $C^*_\varphi(\Lambda)$.

Suppose that Λ satisfies (\ast): For all $v \in \Lambda^0$, $n \in \mathbb{N}^k$, $v\Lambda^n$ is finite and nonempty where $v\Lambda^n := r^{-1}(v) \cap \Lambda^n$.

Definition

Let $\varphi \in Z^2(\Lambda, \mathbb{T})$. Define $C^*_\varphi(\Lambda)$ to be the universal C^*-algebra generated by a family of operators $\{t_\lambda : \lambda \in \Lambda^{e_i}, 1 \leq i \leq k\}$ and a family of orthogonal projections $\{p_v : v \in \Lambda^0\}$ satisfying:

1. For $\lambda \in \Lambda^{e_i}$, $t_\lambda^* t_\lambda = p_{s(\lambda)}$.
2. Suppose $\mu \nu = \nu' \mu'$ where $d(\mu) = d(\mu') = e_i$, $d(\nu) = d(\nu') = e_j$ and $i < j$. Then $t_{\nu'} t_{\mu'} = \varphi(\mu \nu) t_{\mu} t_{\nu}$.
3. For $v \in \Lambda^0$ and $i = 1, \ldots, k$,

$$p_v = \sum_{\lambda \in v\Lambda^{e_i}} t_\lambda t_\lambda^*.$$

Kumjian, Pask, Sims
Cohomology of k-graphs
Main Results.

Fact: The isomorphism class of $C^*_\varphi(\Lambda)$ only depends on $[\varphi] \in H^2(\Lambda, \mathbb{T})$.

There is a gauge action γ of \mathbb{T}^k on $C^*_\varphi(\Lambda)$: For all $z \in \mathbb{T}^k$

\[
\begin{align*}
\gamma_z(p_v) &= p_v & \text{for all } v \in \Lambda^0, \\
\gamma_z(t_\lambda) &= z_i t_\lambda & \text{for all } \lambda \in \Lambda^{e_i}, i = 1, \ldots, k.
\end{align*}
\]

Moreover, the fixed point algebra $C^*(\Lambda, \varphi)^\gamma$ is AF (cf. [KP00]).

Theorem (Gauge Invariant Uniqueness Theorem)

Let $\pi : C^*(\Lambda, \varphi) \to B$ be an equivariant $*$-homomorphism. Then π is injective iff $\pi(p_v) \neq 0$ for all $v \in \Lambda^0$.

Theorem

There is a \mathbb{T}-valued groupoid 2-cocycle σ_φ on \mathcal{G}_Λ such that

\[
C^*_\varphi(\Lambda) \cong C^*(\mathcal{G}_\Lambda, \sigma_\varphi).
\]
Rotation algebras

Recall that $T_k = \mathbb{N}^k$.

There is precisely one 2-cube in T_2, namely $(1, 1)$.

Fix $\theta \in [0, 1)$. Let $\phi \in \mathbb{Z}^2(\Lambda, \mathbb{T})$ be given by $\phi(1, 1) = e^{2\pi i \theta}$.

Then $C^*_\phi(T_2)$ is the universal C^*-algebra generated by unitaries S_{e_1} and S_{e_2} satisfying

$$S_{e_2}S_{e_1} = e^{2\pi i \theta} S_{e_1}S_{e_2}.$$

That is, $C^*_\phi(T_2)$ is the rotation algebra A_θ.

When $\theta = 0$, $C^*_\phi(T_2) \cong C(\mathbb{T}^2)$.

When θ is irrational, $C^*_\phi(T_2)$ is the well-known irrational rotation algebra.

More generally, every noncommutative torus arises as a twisted k-graph C^*-algebra $C^*_\phi(T_k)$.
Heegaard quantum 3-spheres

The quantum 3-sphere $S_{pq\theta}^3$ where $p, q, \theta \in [0, 1)$ is defined in [BHMS]. The authors prove that $S_{pq\theta}^3 \cong S_{00\theta}^3$.

Note $S_{00\theta}^3$ is the universal C^*-algebra generated by S and T satisfying

$$
(1 - SS^*)(1 - TT^*) = 0, \quad ST = e^{2\pi i \theta} TS, \\
S^*S = T^*T = 1, \quad ST^* = e^{-2\pi i \theta} T^*S.
$$

It was known that S_{000}^3 is isomorphic to $C^*(\Lambda)$ where Λ is the 2-graph given as follows:

But what about $S_{00\theta}^3$?
Quantum spheres are twisted 2-graph C^*-algebras

The degree map gives a homomorphism $f : \Lambda \to T_2$ and the induced map

$$f^* : H^2(T_2, \mathbb{T}) \to H^2(\Lambda, \mathbb{T}).$$

is an isomorphism.

There are three 2-cubes $\alpha = ah = hb$, $\beta = cg = fc$ and $\tau = af = fa$.

Fix $\theta \in [0, 1)$. The 2-cocycle on T_2 determined by $(1, 1) \mapsto e^{-2\pi i \theta}$ pulls back to a 2-cocycle ϕ on Λ satisfying

$$\phi(\alpha) = \phi(\beta) = \phi(\tau) = e^{-2\pi i \theta}.$$

Let $\{t_\lambda : \lambda \in \Lambda^{ei}, 1 \leq i \leq k\}$ and $\{p_v : v \in \Lambda^0\}$ be the generators of $C^*_\phi(\Lambda)$.

By the universal property there is a unique map $\Psi : S^3_{000} \to C^*_\phi(\Lambda)$ such that $\Psi(S) = t_a + t_b + t_c$ and $\Psi(T) = t_f + t_g + t_h$.

Moreover, Ψ is an isomorphism.
Categorical cocycle cohomology.

The categorical cocycle cohomology, $H^*_cc(\Lambda, A)$, is just the usual cocycle cohomology for groupoids (see [Ren80]) extended to small categories. We have proven that for $n = 0, 1, 2$

$$H^n(\Lambda, A) \cong H^n_{cc}(\Lambda, A).$$

A map $c : \Lambda \ast \Lambda \to A$ is a categorical 2-cocycle if for any composable triple $(\lambda_1, \lambda_2, \lambda_3)$ we have

$$c(\lambda_1, \lambda_2) + c(\lambda_1 \lambda_2, \lambda_3) = c(\lambda_1, \lambda_2 \lambda_3) + c(\lambda_2, \lambda_3)$$

and c is a categorical 2-coboundary if there is $b : \Lambda \to A$ such that

$$c(\lambda_1, \lambda_2) = b(\lambda_1) - b(\lambda_1 \lambda_2) + b(\lambda_2).$$

$H^2_{cc}(\Lambda, A)$ is the quotient group (2-cocycles modulo 2-coboundaries).
The C^*-algebra $C^*(\Lambda, c)$.

Suppose Λ satisfies (\ast) and let c be a \mathbb{T}-valued categorical 2-cocycle.

Definition (see [KPS])

Let $C^*(\Lambda, c)$ be the universal C^*-algebra generated by the set $\{t_\lambda : \lambda \in \Lambda\}$ satisfying:

1. $\{t_v : v \in \Lambda^0\}$ is a family of orthogonal projections.
2. For $\lambda \in \Lambda$, $t_{s(\lambda)} = t_\lambda^* t_\lambda$.
3. If $s(\lambda) = r(\mu)$, then $t_\lambda t_\mu = c(\lambda, \mu) t_{\lambda \mu}$.
4. For $v \in \Lambda^0$, $n \in \mathbb{N}^k$

\[
t_v = \sum_{\lambda \in v \Lambda^n} t_\lambda t_\lambda^*.
\]

If $[\varphi]$ is mapped to $[c]$ in the identification $H^2(\Lambda, A) \cong H^2_{cc}(\Lambda, A)$, then

\[
C^*_\varphi(\Lambda) \cong C^*(\Lambda, c).
\]
Topological realizations.

One may construct the topological realization X_{Λ} of a k-graph Λ (see [KKQS]) by analogy with the geometric realization of a simplicial set. Let $I = [0, 1]$. For $i = 1, \ldots, n$ and $\ell = 0, 1$ define $\varepsilon_i^\ell : I^{n-1} \to I^n$ by

$$\varepsilon_i^\ell (x_1, \ldots, x_{n-1}) = (x_1, \ldots, x_{i-1}, \ell, x_i, \ldots, x_{n-1}).$$

Then the topological realization is the quotient of

$$\bigsqcup_{n=0}^{k} Q_n(\Lambda) \times I^n$$

by the equivalence relation generated by $(\lambda, \varepsilon_i^\ell (x)) \sim (F_i^\ell (\lambda), x)$ where $\lambda \in Q_n(\Lambda)$ and $x \in I^{n-1}$.

We prove that there is a natural isomorphism $H_n(\Lambda) \cong H_n(X_{\Lambda})$.
References.

Thanks!

Any questions?