Sections 5.2 and 5.3.

Large sample CI for a proportion and small sample CI for a mean.
5.2: Confidence Interval for a Proportion

Estimating proportion of successes in a binomial experiment

Binomial experiment, $X =$ number of successes, $n =$ number of trials, $p =$ probability of success is unknown.

Take $\hat{p} = \frac{X}{n} = \frac{\text{number of successes}}{\text{number of trials}} =$ sample proportion of successes.

Then, \hat{p} is an **unbiased point** estimator of p.

How to get an interval estimate of p?

We start with a large sample and use the Central Limit Theorem.
95% large sample CI for p

When n is large, the probability is 0.95 that the sample proportion is within 1.96 standard deviations of the true proportion (using normal approximation):

$$p - 1.96 \sqrt{\frac{p(1-p)}{n}} < \hat{p} < p + 1.96 \sqrt{\frac{p(1-p)}{n}}$$

It is then also true that for 95% of all possible samples above inequality works.

So, the above interval is a great candidate for the 95% CI for p.
Problem: Consider the formula for the interval we got:

\[\hat{p} - 1.96 \sqrt{\frac{p(1-p)}{n}} < p < \hat{p} + 1.96 \sqrt{\frac{p(1-p)}{n}} \]

This expression is not a practical confidence interval, because it contains the unknown population proportion \(p \) in the margin of error.

The traditional approach is to replace \(p \) with \(\hat{p} \).

Recent research shows that a slight modification of \(n \) and the following estimate of \(p \) provide a good confidence interval:

Define \(\tilde{n} = n + 4 \) and \(\tilde{p} = \frac{X + 2}{\tilde{n}} \).
Confidence Interval for p

Let X be the number of successes in n independent Bernoulli trials with success probability p, so that $X \sim \text{Bin}(n, p)$.

Then a $100(1 - \alpha)\%$ confidence interval for p is

$$
\tilde{p} \pm z_{\alpha/2} \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{\tilde{n}}}
$$

Where $\tilde{n} = n + 4$ and $\tilde{p} = \frac{X + 2}{\tilde{n}}$

If the lower limit is less than 0, replace it with 0.

If the upper limit is greater than 1, replace it with 1.
Example

It was reported that, in a sample of 507 adult Americans, only 142 correctly described the Bill of Rights as the first ten amendments to the U.S. Constitution. Calculate a 99% CI for the proportion of all U. S. adults that could give a correct description of the Bill of Rights.
Sample size for given margin of error

Suppose we want to estimate proportion to within margin of error \(m \). How large a sample do we need?

\[
n = \frac{z_{\alpha/2}^2 \hat{p}(1 - \hat{p})}{m^2} - 4
\]

Example: What sample size is needed to obtain a 99\% confidence interval for the of all U. S. adults that could give a correct description of the Bill of Rights with width (margin of error) \(\pm 0.01 \)?

Example: What if we did not have any prior info on \(p \)? What sample size do we need then?

NOTE: \(\hat{p}(1 - \hat{p}) \) is maximized for \(\hat{p} = 0.5 \). To get (conservative) sample size, use \(\hat{p} = 0.5 \) is the above formula for \(n \) to get:

\[
n = \frac{z_{\alpha/2}^2}{4m^2} - 4
\]
The Traditional Method for CI for p

- Let \(\hat{p} \) be the proportion of successes in a large number of independent Bernoulli trials with success probability \(p \).

- Then the traditional level 100\((1 - \alpha)\)% confidence interval for \(p \) is

\[
\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}.
\]

- The method should not be used unless the sample contains at least 19 successes and 10 failures.

- To obtain a \((1 - \alpha)100\)% CI for proportion using this method, that has margin of error =\(m \), we need sample size

\[
n = \frac{z_{\alpha/2}^2 \hat{p}(1 - \hat{p})}{m^2}
\]

- If we do not have any prior estimate of \(p \), use \(\hat{p} = 0.5 \) in the formula for the sample size, you get:

\[
n = \frac{z_{\alpha/2}^2}{4m^2}
\]
Traditional method of estimating \(p \).

Example: use the data on the Bill of Rights study.

Use the traditional method to find 99% CI for \(p \), and find the sample size needed to obtain a 99% confidence interval for \(p \) with width (margin of error) \(\pm 0.01 \)?

Also, assuming that we do not have any estimates of \(p \) available, estimate the sample size needed to obtain a 99% confidence interval for \(p \) with width (margin of error) \(\pm 0.01 \)?

Compare the results to those obtained using the previous method.
5.3: Small Sample CIs for a Population Mean

- The methods that we have discussed for a population mean previously require that the sample size be large.

- When the sample size is small, there are no good general methods for finding CIs.

- However, when the population is approximately normal, a probability distribution called the Student’s t distribution can be used to compute confidence intervals for a population mean.
Small-Sample Confidence Intervals for the Mean

- What can we do if \bar{X} is the mean of a *small* sample?

- If the sample size is small, s may not be close to σ, and \bar{X} may not be approximately normal. If we know nothing about the population from which the small sample was drawn, there are no easy methods for computing CIs.

- If the population is approximately normal, it will be approximately normal even when the sample size is small. It turns out that we can use the quantity

$$\frac{(\bar{X} - \mu)}{(s / \sqrt{n})}$$

but since s may not be close to σ, this quantity has a Student’s t distribution.
Student’s t Distribution

- Let X_1, \ldots, X_n be a small ($n < 30$) random sample from a normal population with mean μ. Then the quantity
 \[
 \frac{\bar{X} - \mu}{s / \sqrt{n}}
 \]
 has a Student’s t distribution with $n - 1$ degrees of freedom (denoted by t_{n-1}).

- When n is large, the distribution of the above quantity is very close to normal, so the normal curve can be used, rather than the Student’s t.

More on Student’s t

- The probability density of the Student’s t distribution is different for different degrees of freedom.

- The t curves are more spread out than the standard normal distribution.

Table A.3, called a t table, provides probabilities associated with the Student’s t distribution.
Example: using t-table

Find the value for the t_{14} distribution whose lower-tail probability is 0.01.

Soln: Look down the column headed with “0.01” to the row corresponding to 14 degrees of freedom. The value for $t = 2.624$. This value cuts off an area, or probability, of 1% in the upper tail. The value whose lower-tail probability is 1% is -2.624.
Student’s t CI for the mean: normal population, σ not known

Let X_1, \ldots, X_n be a small random sample from a normal population with mean μ. Then a level 100$(1 - \alpha)$% CI for μ is

$$
\bar{X} \pm t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}.
$$

The sample must come from a population that is approximately normal.

Note: Normal or approximately normal samples are roughly symmetric and (practically) do not contain outliers.

Other CIs: normal population, σ known

If a small sample is taken from a normal population with standard deviation σ known, then we use the CI that is using the z value.
Example 8

A random sample of $n = 8$ E-glass fiber test specimens of a certain type yielded a sample mean interfacial shear yield stress of 30.5 and a sample standard deviation of 3.0. Assuming that interfacial shear yield stress is normally distributed, compute a 95% CI for true average stress?
Example

The article “Direct Strut-and-Tie Model for Prestressed Deep Beams” presents measurements of the nominal shear strength (in kN) for a sample of 15 prestressed concrete beams. The results are

580 400 428 825 850 875 920 550 575 750 636 360 590 735 950

Assume that on the basis of a very large number of previous measurements of other beams, the population of shear strengths is known to be approximately normal, with standard deviation $\sigma = 180.0$ kN. Find a 99% confidence interval for the mean shear strength.

MINITAB exercise.

One-Sample Z: strength

The assumed standard deviation = 180

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
<th>99% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>strength</td>
<td>15</td>
<td>668.3</td>
<td>192.1</td>
<td>46.5</td>
<td>(548.6, 788.0)</td>
</tr>
</tbody>
</table>

What is SE Mean in MINITAB output? It is $\sigma \bar{X} = \text{StDev}/\sqrt{N}$

What if we did not have the population standard deviation σ?

One-Sample T: strength

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
<th>99% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>strength</td>
<td>15</td>
<td>668.3</td>
<td>192.1</td>
<td>49.6</td>
<td>(520.6, 815.9)</td>
</tr>
</tbody>
</table>
MINITAB: computing CI for p.

It was reported that, in a sample of 507 adult Americans, only 142 correctly described the Bill of Rights as the first ten amendments to the U.S. Constitution. Calculate a 99% CI for the proportion of all U. S. adults that could give a correct description of the Bill of Rights.

Test and CI for One Proportion

<table>
<thead>
<tr>
<th>Sample</th>
<th>X</th>
<th>N</th>
<th>Sample p</th>
<th>99% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>142</td>
<td>507</td>
<td>0.280079</td>
<td>(0.230011, 0.334362)</td>
</tr>
</tbody>
</table>