Math/Stat 352
Lecture 7

Section 4.1 and 4.2

Commonly Used Distributions: The Bernoulli and Binomial distributions
The Bernoulli Distribution

We use the Bernoulli distribution when we have an experiment/trial which can result in one of two outcomes labeled: Success (S) and Failure (F).

The probability of a success is denoted by \(p = P(S) \).
The probability of a failure is then 1 – p = P(F).

Such a trial/experiment is called a Bernoulli trial with success probability \(p \).
Examples

1. The simplest Bernoulli trial is the toss of a coin. The two outcomes are heads and tails. If we define heads to be the success outcome, then p is the probability that the coin comes up heads. For a fair coin, $p = 0.5$.

2. Another Bernoulli trial is a selection of a component from a population of components, some of which are defective. If we define “success” to be a defective component, then p is the proportion of defective components in the population.
Bernoulli random variable: $X \sim \text{Bernoulli}(p)$

For any Bernoulli trial, we define a random variable X as follows:

If the experiment results in a success, then $X = 1$. Otherwise, $X = 0$.

It follows that X is a discrete random variable, with probability mass function $p(x)$ defined by

$$p(0) = P(X = 0) = 1 - p$$
$$p(1) = P(X = 1) = p$$
$$p(x) = 0 \text{ for any value of } x \text{ other than 0 or 1}$$
Mean and Variance of Bernoulli r.v.

If \(X \sim \text{Bernoulli}(p) \), then

\[
\mu_X = 0(1-p) + 1(p) = p
\]

\[
\sigma^2_X = (0 - p)^2 (1 - p) + (1 - p)^2 (p) = p(1 - p)
\]
Example

Ten percent of components manufactured by a certain process are defective. A component is chosen at random. Let $X = 1$ if the component is defective, and $X = 0$ otherwise.

1. What is the distribution of X?

2. Find the mean and variance of X.
Example

At a certain fast food restaurant, 25% of drink orders are for a small drink, 35% for a medium, and 40% for a large drink. Let $X=1$ if a randomly chosen order is for a small, and let $X=0$ otherwise. Let $Y=1$ if the order is for medium, and $Y=0$ otherwise. Let $Z=1$ if the order is for either small or medium, and let $Z=0$ otherwise.

1. Let p_x denote the success probability for X. What is p_x?
2. Let p_y denote the success probability for Y. What is p_y?
3. Let p_z denote the success probability for Z. What is p_z?
4. Is it possible for both X and Y to equal 1?
5. Does $p_z = p_x + p_y$?
6. Does $Z = X + Y$?
The Binomial Distribution

If a total of \(n \) Bernoulli trials are conducted, and

- The trials are independent.
- Each trial has the same success probability \(p \)
- \(X = \# \) of successes in the \(n \) Bernoulli trials

then \(X \) has the binomial distribution with parameters \(n \) and \(p \), denoted \(X \sim \text{Bin}(n, p) \).
The Binomial Distribution

Binomial(15, 0.1)
Unimodal (mode = 1)
Right-skewed
Mean = np = 1.5)
Concentrated around 1.5

Binomial(19, 0.1)
Unimodal (mode = 1)
Right-skewed
Mean = np = 1.9
Concentrated around 1.9
Example

A fair coin is tossed 10 times. Let X be the number of heads that appear. What is the distribution of X?
Sampling from Finite Populations: Binomial Distribution

Experiment: A simple random sample is drawn from a finite population that contains items of two types: S and F. Assume that the sample size is no more than 5% of the population.

Let $X =$ # of S in the sample. Then, $X \sim \text{Bin}(n, p)$.

Example: A lot contains several thousand components, 10% of which are defective. Seven components are sampled from the lot. Let X represent the number of defective components in the sample. What is the distribution of X?
Binomial R.V.: pmf, mean, and variance

- If $X \sim \text{Bin}(n, p)$, the probability mass function of X is

$$p(x) = P(X = x) = \begin{cases} \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}, & x = 0,1,...,n \\ 0, & \text{otherwise} \end{cases}$$

- Mean of X: $EX = \mu_X = np$

- Variance of X: $\sigma_X^2 = np(1-p)$
Example

A large industrial firm allows a discount on any invoice that is paid within 30 days. Of all invoices, 10% receive the discount. In a company audit, 12 invoices are sampled at random. What is the probability that fewer than 4 of the 12 sampled invoices receive the discount?
Binomial as sum of iid Bernoulli rv’s.

- Assume n independent Bernoulli trials are conducted.

- Each trial has probability of success p.

- Let Y_1, \ldots, Y_n be defined as follows:

$$Y_i = \begin{cases} 1 & \text{if S on ith trial} \\ 0 & \text{if F on ith trial} \end{cases}$$

That is each of the Y_i has the Bernoulli(p) distribution.

- Let $X = \text{number of successes among the } n \text{ trials, so } X \sim \text{Bin}(n, p)$.
 Also note that $X = Y_1 + \ldots + Y_n$.

Thus sum of n iid Bernoulli(p) rv’s has a Binomial(n, p) distribution.
Estimate of p

In practice we usually do not know p need to approximate/estimate p.

Estimation of p: (1) collect a sample on n Bernoulli trials,

(2) compute X= the number of S in the sample.

(3) Use the sample proportion of S: $\hat{p} = X / n$ to estimate p.

Note that: $X \sim \text{Bin}(n, p)$.

Since X is a random variable, then $\hat{p} = X / n$ is also a random variable.
How good is \(\hat{p} \) in estimating \(p \)?

Mean of \(\hat{p} \): \(\mathbb{E}[\hat{p}] = p \), so on average, the estimator \(\hat{p} \) = \(p \).

We say that \(\hat{p} \) is an unbiased estimator of \(p \).

Error of the estimation: \(\hat{p} - p \).

The uncertainty or standard deviation of \(\hat{p} \) is \(\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \).

In practice, when computing \(\sigma \), we substitute \(\hat{p} \) for \(p \), since \(p \) is unknown.
Example

In a sample of 100 newly manufactured automobile tires, 7 are found to have minor flaws on the tread. If four newly manufactured tires are selected at random and installed on a car, estimate the probability that none of the four tires have a flaw.