Team exercise

Consider an autocatalytic reaction \(A \rightarrow B \) with \(-\frac{\text{d}[A]}{\text{d}t} = k_2 [A] [B] \). It is said to be autocatalytic because a higher concentration of the product \(B \) increases the rate of the production of that same product \(B \). Autocatalytic reactions are common in biological systems.

We wish to process 1.5 L/s of feed, with \([A_0] = 10 \text{ mol/L} \). Four 100-L mixed reactors are available, and may be configured in any manner (series, parallel, multiple feeds, etc.) Suggest a configuration to maximize the production rate of \(B \). Sketch your recommended design and calculate the conversion.

Data: \(k_2 = 0.001 \text{ L/(mol s)} \).

(A) Brainstorm. Make a list of as many possible configurations as you can imagine. You should be able to find LOTS of possibilities. Seek information, if necessary. At this stage, don't evaluate- just make a long list. (5 minutes)

(B) Now, evaluate. Each group should recommend exactly one configuration, and explain why that configuration appears optimal.