1. **Autonomous first-order DEs:**

Step 1. Find critical points and equilibrium solutions:

A real number \(c \) is called a critical point (or equilibrium point or stationary point) of an autonomous ODE \(\frac{dy}{dx} = f(y) \) if \(f(c) = 0 \).

If \(c \) is a critical point of \(\frac{dy}{dx} = f(y) \) then \(y(x) = c \) is a constant solution of \(\frac{dy}{dx} = f(y) \).

A constant solution to \(\frac{dy}{dx} = f(y) \) is called an equilibrium solution.

Example: ON BOARD

Step 2. Determine the phase portrait:

Critical points are used to determine the (one-dimensional) phase portrait or phase line of an autonomous ODE.

Example: ON BOARD

Step 3. Sketch Solution Curves:

Phase portraits (or phase lines) can be used to sketch solution curves of autonomous ODEs.
Since \(f = f(y) \) (i.e., \(f \) is independent of \(x \)) then \(f \) is defined for all meaningful \(x \) values, i.e., \(-\infty < x < \infty\) or \(0 \leq x < \infty\).

Suppose \(y' = f(y) \) has exactly two distinct critical points \(c_1 \) and \(c_2 \), where \(c_1 < c_2 \).

The equilibrium solutions are \(y(x) = c_1 \) and \(y(x) = c_2 \) whose graphs are horizontal lines that partition \(R \) into three subregions \(R_1, R_2 \) and \(R_3 \):

\[
R_1 = \{(x,y) \in R : y < c_1\}
\]
\[
R_2 = \{(x,y) \in R : c_1 < y < c_2\}
\]
\[
R_3 = \{(x,y) \in R : y > c_2\}
\]

Example: ON BOARD

The following properties of nonconstant solutions \(y(x) \) of \(y' = f(y) \) can be shown:

1. If \((x_0, y_0)\) is in subregion \(R_i \) and \(y(x) \) passes through this point, then \(y(x) \) remains in subregion \(R_i \) for all \(x \). That is, the graph of a nonconstant solution cannot cross the graph of an equilibrium solution.

2. \(f(y) \) cannot change signs in a subregion \(R_i \) (since it is continuous), i.e.,

\[
\begin{align*}
&f(y(x)) > 0 \text{ for all } x \in R_i \text{ or } \\
&f(y(x)) < 0 \text{ for all } x \in R_i, (i = 1, 2, 3).
\end{align*}
\]

Therefore, since \(\frac{dy}{dx} = f(y(x)) \), a nonconstant solution \(y(x) \) is strictly monotonic in subregion \(R_i \). That is, a nonconstant solution \(y(x) \) is either strictly increasing in \(R_i \) or strictly decreasing in \(R_i \). Specifically, \(y(x) \) cannot oscillate or have local maxima or minima.
3. The graph of $y(x)$ approaches the graph of one or more equilibrium solutions.

(a) If $y(x)$ is bounded above by critical point c_1 (i.e., $y(x)$ is in R_1), then the graph of $y(x)$ approaches the graph of the equilibrium solution $y(x) = c_1$ either as $x \to \infty$ or as $x \to -\infty$.

(b) If $y(x)$ is bounded below by critical point c_2 (i.e., $y(x)$ is in R_3), then the graph of $y(x)$ approaches the graph of the equilibrium solution $y(x) = c_2$ either as $x \to \infty$ or as $x \to -\infty$.

(c) If $y(x)$ is bounded above and below by critical point c_2 and c_1, respectively, (i.e., $y(x)$ is in R_2), then the graph of $y(x)$ approaches the graphs of the equilibrium solutions $y(x) = c_2$ and $y(x) = c_1$, one as $x \to \infty$ and the other as $x \to -\infty$.

Example: ON BOARD
2. **Classification of Critical Points:** A critical point \(c \) is called:

- **asymptotically stable** if all solutions \(y(x) \) of \(\frac{dy}{dx} = f(y) \) that start from an initial point \((x_0, y_0) \) sufficiently close to \(y = c \) approach \(y = c \) as \(x \to \infty \), i.e., if \(\lim_{x \to \infty} y(x) = c \) for any solution \(y(x) \) that starts sufficiently close to \(y = c \). In this case, \(c \) is called an attractor.

![Asymptotically Stable](image)

- **unstable (or a repeller)** if all solutions \(y(x) \) of \(\frac{dy}{dx} = f(y) \) that start from an initial point \((x_0, y_0) \) sufficiently close to \(y = c \) move away from \(y = c \) as \(x \) increases.

![Unstable](image)

- **semi-stable** if some solutions of \(\frac{dy}{dx} = f(y) \) that start sufficiently close to \(y = c \) approach \(y = c \) and some move away from \(y = c \) as \(x \) increases.

![Semi-stable](image)
3. Find and classify all the equilibrium solutions to the following differential equation.
\[y' = (y^2 - 4)(y + 1)^2 \]

\[f(y) = 0 \Rightarrow (y^2 - 4)(y + 1)^2 = 0 \Rightarrow \]
\[y^2 - 4 = 0 \quad y = \pm 2 \]
\[(y + 1)^2 = 0 \quad y = -1 \]

\[\uparrow \quad \downarrow \]
\[2 \quad < \text{unstable} \]
\[\downarrow \quad \downarrow \]
\[-1 \quad < \text{semi-stable} \]
\[\uparrow \quad \uparrow \]
\[-2 \quad < \text{stable} \]

Phase portrait

4. Consider the dynamical system \(\frac{dy}{dt} = 3(y - 2)(y - 1)(y + 1) \). Find and classify all the equilibrium solutions. Sketch a phase portrait and possible solution curves.
5. Consider the differential equation \(\frac{dz}{dt} = -3(z - 5)(z - 10) \). Find and classify all the equilibrium solutions. Sketch a phase portrait and possible solution curves.

\[f(z) = -3(z - 5)(z - 10) = 0 \]

\[z = 5, \quad z = 10 \]

\(10 \leftrightarrow \text{stable} \)

\(5 \leftrightarrow \text{unstable} \)