Theorem (Fundamental Theorem for Line Integrals)

Let \(C \) be a smooth curve given by \(\mathbf{r}(t) \) for \(a \leq t \leq b \).

Let \(f \) be a differentiable function whose gradient \(\nabla f \) is continuous on \(C \). Then

\[
\int_C \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))
\]
Note: Since conservative vector fields are gradient fields, if \vec{F} is conservative then

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_1} \vec{\nabla} f \cdot d\vec{r} = f(B) - f(A)$$

While

$$\int_{C_2} \vec{F} \cdot d\vec{r} = \int_{C} \vec{\nabla} f \cdot d\vec{r} = f(B) - f(A)$$

So

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$$

For a conservative vector field \vec{F},

$\int_C \vec{F} \cdot d\vec{r}$ only depends on the initial and terminal points of the curve C.
If generally, if \(\int_{C} F \cdot dr \) only depends upon the initial and terminal points of the curve \(C \) (for all curves in some region \(D \) then we say that the line integral is \underline{independent of path} in \(D \).

Note: this is really a feature of \(F \).

Def: A closed curve (path) is a curve whose initial and terminal points are the same.

\[A = B \]
Example: Let \(\vec{F} = y\hat{i} + x\hat{j} \).

Observe that \(\vec{F} = \nabla f \) where
\[f(x, y) = xy. \]

Evaluate \(\int_{C_1} \vec{F} \cdot d\vec{r} \) and \(\int_{C_2} \vec{F} \cdot d\vec{r} \).
Theorem $\int_C \vec{F} \cdot d\vec{r}$ is independent of path in D if and only if $\int_C \vec{F} \cdot d\vec{r} = 0$ for every closed path in D.
Theorem: Suppose \mathbf{F} is a vector field that is continuous on an open connected region D.

If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D, then \mathbf{F} is a conservative vector field. That is, there is a scalar function f such that

$$\mathbf{F} = \nabla f.$$
Theorem: If $\vec{F} = P\hat{i} + Q\hat{j}$ is a conservative vector field, then $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

Theorem: Let $\vec{F} = P\hat{i} + Q\hat{j}$ be a vector field on an open simply-connected region D. Suppose P_x, P_y, Q_x, Q_y are continuous.

If $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ throughout D, then \vec{F} is conservative.
Ex. Determine whether the vector field is conservative.

a) \(\vec{F}_1 = \langle 2x + y, x + 2y \rangle \)

b) \(\vec{F}_2 = \langle -y, x \rangle \)
ex Let \(\mathbf{F} = (3 + 2xy) \mathbf{i} + (x^2 - 3y^2) \mathbf{j} \)

a) Find a function \(f \) such that \(\mathbf{F} = \nabla f \)

Solution

\[f_x = 3 + 2xy \quad (1) \]
\[f_y = x^2 - 3y^2 \quad (2) \]

\[
\begin{align*}
 f(x, y) &= \int f_x \, dx = 3x + x^2y + g(y) \\
 f_y(x, y) &= x^2 - 3y^2 = \frac{\partial}{\partial y} (3x + x^2y + g(y)) \\
 x^2 - 3y^2 &= x^2 + g'(y) \\
 \text{Thus} \quad g'(y) &= -3y^2 \\
 g(y) &= -y^3 + K \\
 \text{Then} \quad f(x, y) &= 3x + x^2y - y^3 + K
\end{align*}
\]
ex. Again, let \(\vec{F} = (3+2xy)\vec{i} + (x^2-3y^2)\vec{j} \)

b) Evaluate \(\int_C \vec{F} \cdot d\vec{r} \) where

\(C \) is the curve given by

\[\vec{r}(t) = e^t \sin t \vec{i} + e^t \cos t \vec{j}, \quad 0 \leq t \leq \pi. \]
ex: Let \(\mathbf{F} = \langle yz, xz, \cos z + xy \rangle \)

Try to find a scalar function \(f(x, y, z) \) such that \(\mathbf{F} = \nabla f \).

1. \(f_x = yz \)
2. \(f_y = xz \)
3. \(f_z = \cos(z) + xy \)

\[f(x, y, z) = \int f_x \, dx = xyz + g(y, z) \]

\[f_y = \frac{\partial}{\partial y} (xyz + g(y, z)) \]

\[xz = xz + g_y(y, z) \] so \(g_y(y, z) = 0 \)

Thus \(g(y, z) = h(z) \)

\[f(x, y, z) = xyz + h(z) \]

\[\cos(z) + xy = f_z = \frac{\partial}{\partial z} (xyz + h(z)) \]

\[\cos(z) + xy = xy + h'(z) \]

\(h'(z) = \cos(z) \) so \(h(z) = \sin(z) + k \)

\[f(x, y, z) = xyz + \sin(z) + k \]