(1) Let \(\vec{F} = xy\vec{i} + xy\vec{j} + 3\vec{k} \) and consider the surface \(S : x^2 + y^2 + z^2 = 49 \). If \(D \) is the ball enclosed by \(S \), then which of the triple integrals below is equal to the surface integral \(\iint_S \vec{F} \cdot \vec{n} \, dS \)? Use the Divergence Theorem.

(a) \(\iiint_D (x + y^2 + xz) \, dV \)
(b) \(\iiint_D (yz) \, dV \)
(c) \(\iiint_D (y^2 + x) \, dV \)
(d) \(\iiint_D (1 + x + 2y) \, dV \)
(e) none of these

(1) _____
(2) Let $\vec{F} = P\vec{i} + Q\vec{j} = (3 + 2x)\vec{i} + (7x + y)\vec{j}$.

Consider the line integral $\oint_C \vec{F} \cdot \vec{T} \, ds$ over a counter-clockwise oriented simple closed curve C which bounds a region R in the xy-plane.

If the area of the region R in the xy-plane is 3, then by Green’s Theorem the value of $\oint_C \vec{F} \cdot \vec{T} \, ds$ is

(a) 9 (b) 3 (c) 7 (d) 21 (e) none of these (2) _____