Example 7.1 Diodes are produced with an estimated failure rate of 0.3%. That is, for every thousand diodes manufactured 3 are expected to be faulty.
Example 7.1 Diodes are produced with an estimated failure rate of 0.3%. That is, for every thousand diodes manufactured 3 are expected to be faulty.

What is the most cost efficient scheme for testing batches of diodes if it costs $4 + n$ cents to test n diodes?
Example 7.1 Diodes are produced with an estimated failure rate of 0.3%. That is, for every thousand diodes manufactured 3 are expected to be faulty.

What is the most cost efficient scheme for testing batches of diodes if it costs $4 + n$ cents to test n diodes?

Important note: if a batch of n diodes is tested and it is determined that one of the diodes is bad, then each diode must be tested in turn to determine which are the faulty diodes.
Example 7.1 Diodes are produced with an estimated failure rate of 0.3%. That is, for every thousand diodes manufactured 3 are expected to be faulty.

What is the most cost efficient scheme for testing batches of diodes if it costs $4 + n$ cents to test n diodes?

Important note: if a batch of n diodes is tested and it is determined that one of the diodes is bad, then each diode must be tested in turn to determine which are the faulty diodes.

Table: Variables

- n: number in a testing batch
- C: Cost for testing a batch in cents
- A: Average of C (per diode)
Example 7.1 Diodes are produced with an estimated failure rate of 0.3%. That is, for every thousand diodes manufactured 3 are expected to be faulty.

What is the most cost efficient scheme for testing batches of diodes if it costs \(4 + n \) cents to test \(n \) diodes?

Important note: if a batch of \(n \) diodes is tested and it is determined that one of the diodes is bad, then each diode must be tested in turn to determine which are the faulty diodes.

Table: Variables

\(n \)	number in a testing batch
\(C \)	Cost for testing a batch in cents
\(A \)	Average of \(C \) (per diode)

End
Assumptions:

If \(n = 1 \) then \(C = 5 \).

If \(n > 1 \), then
\[
C = \begin{cases}
4 + n & \text{if the batch passes} \\
4 + 5n & \text{if the batch doesn't pass}
\end{cases}
\]

Finally, \(A = \frac{\text{average}(C)}{n} = \frac{E(C)}{n} \).

Objective: Minimize \(A \).
Assumptions:

If $n = 1$ then $C = 5$.

Objective: Minimize A

End
Assumptions:

- If $n = 1$ then $C = 5$.
- If $n > 1$, then

\[
C = \begin{cases}
4 + n & \text{if the batch passes} \\
(4 + n) + 5n & \text{if the batch doesn’t pass}
\end{cases}
\]

Objective: Minimize A

End
Assumptions:

- If $n = 1$ then $C = 5$.
- If $n > 1$, then
 \[
 C = \begin{cases}
 4 + n & \text{if the batch passes} \\
 (4 + n) + 5n & \text{if the batch doesn’t pass}
 \end{cases}
 \]
- Finally, $A = \text{average}(C)/n = E(C)/n$.
Assumptions:

- If $n = 1$ then $C = 5$.
- If $n > 1$, then

 \[C = \begin{cases}
 4 + n & \text{if the batch passes} \\
 (4 + n) + 5n & \text{if the batch doesn’t pass}
 \end{cases} \]

- Finally, $A = \text{average}(C)/n = E(C)/n$.

Objective: Minimize A
Assumptions:
- If $n = 1$ then $C = 5$.
- If $n > 1$, then
 \[C = \begin{cases} 4 + n & \text{if the batch passes} \\ (4 + n) + 5n & \text{if the batch doesn’t pass} \end{cases} \]
- Finally, $A = \frac{\text{average}(C)}{n} = \frac{E(C)}{n}$.

Objective: Minimize A

End
Solve the model. We want to minimize $A = E(C)/n$.

The expected value of C is $E(C) = p(4 + n) + (1 - p)(4 + n + \lceil n \rceil)$ where p is the probability that all n diodes in the batch are good.

This simplifies to $E(C) = 4 + 6n - 5p$ and so $A(n) = E(C)n = 4n + 6 - 5p$.

End
Solve the model. We want to minimize $A = E(C)/n$.

The expected value of C is

$$E(C) = p(4 + n) + (1 - p)(4 + n + [5n])$$

where p is the probability that all n diodes in the batch are good.
Solve the model. We want to minimize \(A = \frac{E(C)}{n} \).

The expected value of \(C \) is

\[
E(C) = p(4 + n) + (1 - p)(4 + n + [5n])
\]

where \(p \) is the probability that all \(n \) diodes in the batch are good.

This simplifies to

\[
E(C) = 4 + 6n - 5np
\]

and so

\[
A(n) := \frac{E(C)}{n} = \frac{4}{n} + 6 - 5p.
\]
Solve the model. We want to minimize \(A = \frac{E(C)}{n} \).

The expected value of \(C \) is

\[
E(C) = p(4 + n) + (1 - p)(4 + n + [5n])
\]

where \(p \) is the probability that all \(n \) diodes in the batch are good.

This simplifies to

\[
E(C) = 4 + 6n - 5np
\]

and so

\[
A(n) := \frac{E(C)}{n} = \frac{4}{n} + 6 - 5p.
\]

End
Recall

\[A(n) := \frac{E(C)}{n} = \frac{4}{n} + 6 - 5p. \]
Recall

\[A(n) := \frac{E(C)}{n} = \frac{4}{n} + 6 - 5p. \]

What is \(p \)? The probability that all \(n \) diodes in our batch are good is (by independence) \(p = (1 - q)^n \) where \(q \) is the failure rate. With our current choice of \(q = 0.003 \), the probability all diodes in a given batch of \(n \) diodes are good is \(p = (0.997)^n \).
Recall

\[A(n) := \frac{E(C)}{n} = \frac{4}{n} + 6 - 5p. \]

What is \(p \)? The probability that all \(n \) diodes in our batch are good is (by independence) \(p = (1 - q)^n \) where \(q \) is the failure rate. With our current choice of \(q = 0.003 \), the probability all diodes in a given batch of \(n \) diodes are good is \(p = (0.997)^n \).

We now use a Maple worksheet to analyze

\[A(n) := \frac{E(C)}{n} = \frac{4}{n} + 6 - 5(1 - q)^n. \]

In particular, we optimize \(A \) with respect to \(n \) and then afterwards consider the sensitivity of our results to the assumed failure rate \(q = 0.003 \).
Recall

\[A(n) := \frac{E(C)}{n} = \frac{4}{n} + 6 - 5p. \]

What is \(p \)? The probability that all \(n \) diodes in our batch are good is (by independence) \(p = (1 - q)^n \) where \(q \) is the failure rate. With our current choice of \(q = 0.003 \), the probability all diodes in a given batch of \(n \) diodes are good is \(p = (0.997)^n \).

We now use a Maple worksheet to analyze

\[A(n) := \frac{E(C)}{n} = \frac{4}{n} + 6 - 5(1 - q)^n. \]

In particular, we optimize \(A \) with respect to \(n \) and then afterwards consider the sensitivity of our results to the assumed failure rate \(q = 0.003 \).

End