Now we consider some probability models where the random variable takes value over an interval. The main difference between such models and the discrete ones considered before is that the sums are replaced by integrals.
Chapter 7.2.

Now we consider some probability models where the random variable takes value over an interval. The main difference between such models and the discrete ones considered before is that the sums are replaced by integrals.
Probability background:

For a continuous random variable X, we call $F(x) = \Pr(X \leq x)$ the distribution function of X, and we call $f(x) = F'(x)$ the density function.

Note that $\Pr(a \leq X \leq b) = \int_a^b f(x) \, dx$.

The expected value is $E[X] = \int_a^b x f(x) \, dx$.
Probability background:

For a continuous random variable X, we call $F(x) = Pr(X \leq x)$ the distribution function of X, and we call $f(x) = F'(x)$ the density function.
Probability background:

For a continuous random variable X, we call $F(x) = Pr(X \leq x)$ the distribution function of X, and we call $f(x) = F'(x)$ the density function.

Note that

$$Pr(a \leq X \leq b) = \int_{a}^{b} f(x)dx.$$
Probability background:

- For a continuous random variable X, we call $F(x) = Pr(X \leq x)$ the distribution function of X, and we call $f(x) = F'(x)$ the density function.
- Note that
 \[Pr(a \leq X \leq b) = \int_a^b f(x) \, dx. \]
- The expected value is $EX = \int_a^b x f(x) \, dx$.

Probability background:

For a continuous random variable X, we call $F(x) = Pr(X \leq x)$ the distribution function of X, and we call $f(x) = F'(x)$ the density function.

Note that

$$Pr(a \leq X \leq b) = \int_a^b f(x)dx.$$

The expected value is $EX = \int_a^b xf(x)dx$.

End.
When we model random arrivals, and X is the time between the random arrivals, a common probability model is the distribution

$$F(t) = \begin{cases}
1 - e^{-\lambda t} & t \geq 0 \\
0 & t < 0
\end{cases}$$

This distribution is called the exponential distribution with rate parameter λ.

End.
When we model random arrivals, and X is the time between the random arrivals, a common probability model is the distribution

$$F(t) = \begin{cases} 1 - e^{-\lambda t} & t \geq 0 \\ 0 & t < 0 \end{cases}$$

The probability density function $f(t)$ is the derivative of $F(t)$.
When we model random arrivals, and X is the time between the random arrivals, a common probability model is the distribution

$$F(t) = \begin{cases} 1 - e^{-\lambda t} & t \geq 0 \\ 0 & t < 0 \end{cases}$$

The probability density function $f(t)$ is the derivative of $F(t)$

$$f(t) = \begin{cases} \lambda e^{-\lambda t} & t \geq 0 \\ 0 & t < 0 \end{cases}$$
When we model random arrivals, and X is the time between the random arrivals, a common probability model is the distribution

$$F(t) = \begin{cases} 1 - e^{-\lambda t} & t \geq 0 \\ 0 & t < 0 \end{cases}$$

The probability density function $f(t)$ is the derivative of $F(t)$

$$f(t) = \begin{cases} \lambda e^{-\lambda t} & t \geq 0 \\ 0 & t < 0 \end{cases}$$

This distribution is called the *exponential distribution* with rate parameter λ.
When we model random arrivals, and X is the time between the random arrivals, a common probability model is the distribution

$$F(t) = \begin{cases} 1 - e^{-\lambda t} & t \geq 0 \\ 0 & t < 0 \end{cases}$$

The probability density function $f(t)$ is the derivative of $F(t)$

$$f(t) = \begin{cases} \lambda e^{-\lambda t} & t \geq 0 \\ 0 & t < 0 \end{cases}$$

This distribution is called the *exponential distribution* with rate parameter λ.

End.
This has an important property for random arrivals, namely that the probability distribution of waiting times from now until the next arrival is independent of how long we have already waited. The justification follows.
This has an important property for random arrivals, namely that the probability distribution of waiting times from now until the next arrival is independent of how long we have already waited. The justification follows.

Recall that the conditional probability of event A given that event B has occurred is

$$Pr(A|B) := \frac{Pr(A \cap B)}{Pr(B)}.$$
This has an important property for random arrivals, namely that the probability distribution of waiting times from now until the next arrival is independent of how long we have already waited. The justification follows.

Recall that the conditional probability of event A given that event B has occurred is

$$Pr(A|B) := \frac{Pr(A \cap B)}{Pr(B)}.$$

In our setting (since $s, t > 0$) this translates to

$$Pr(X > s + t|X > s) = \frac{Pr(X > s + t)}{Pr(X > s)}$$
This has an important property for random arrivals, namely that the probability distribution of waiting times from now until the next arrival is independent of how long we have already waited. The justification follows.

Recall that the conditional probability of event A given that event B has occurred is

$$Pr(A|B) := \frac{Pr(A \cap B)}{Pr(B)}.$$

In our setting (since $s, t > 0$) this translates to

$$Pr(X > s + t|X > s) = \frac{Pr(X > s + t)}{Pr(X > s)}$$

and since

$$Pr(X > u) = \int_u^\infty \lambda e^{-\lambda x} \, dx = -e^{-\lambda x} \bigg|_u^\infty = e^{-\lambda u}$$

which is called the memoryless property of the exponential distribution.
This has an important property for random arrivals, namely that the probability distribution of waiting times from now until the next arrival is independent of how long we have already waited. The justification follows.

Recall that the conditional probability of event A given that event B has occurred is

$$Pr(A|B) := \frac{Pr(A \cap B)}{Pr(B)}.$$

In our setting (since $s, t > 0$) this translates to

$$Pr(X > s + t|X > s) = \frac{Pr(X > s + t)}{Pr(X > s)}$$

and since

$$Pr(X > u) = \int_u^\infty \lambda e^{-\lambda x} \, dx = -e^{-\lambda x} \bigg|_u^\infty = e^{-\lambda u}$$

it works out to

$$Pr(X > s + t|X > s) = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = Pr(X > t)$$

which is called the memoryless property of the exponential distribution.
This has an important property for random arrivals, namely that the probability distribution of waiting times from now until the next arrival is independent of how long we have already waited. The justification follows.

Recall that the conditional probability of event A given that event B has occurred is

$$Pr(A|B) := \frac{Pr(A \cap B)}{Pr(B)}.$$

In our setting (since $s, t > 0$) this translates to

$$Pr(X > s + t|X > s) = \frac{Pr(X > s + t)}{Pr(X > s)}$$

and since

$$Pr(X > u) = \int_u^\infty \lambda e^{-\lambda x} dx = -e^{-\lambda x}\big|_u^\infty = e^{-\lambda u}$$

it works out to

$$Pr(X > s + t|X > s) = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = Pr(X > t)$$

which is called the memoryless property of the exponential distribution.
This has an important property for random arrivals, namely that the probability distribution of waiting times from now until the next arrival is independent of how long we have already waited. The justification follows.

Recall that the conditional probability of event A given that event B has occurred is

$$Pr(A|B) := \frac{Pr(A \cap B)}{Pr(B)}.$$

In our setting (since $s, t > 0$) this translates to

$$Pr(X > s + t|X > s) = \frac{Pr(X > s + t)}{Pr(X > s)}$$

and since

$$Pr(X > u) = \int_u^\infty \lambda e^{-\lambda x} \, dx = -e^{-\lambda x}\bigg|_u^\infty = e^{-\lambda u}$$

it works out to

$$Pr(X > s + t|X > s) = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = Pr(X > t)$$

which is called the memoryless property of the exponential distribution.

End
By the strong law of large numbers, the average of n observations of X_1, \ldots, X_n tends to EX_n for large n.

That is, $X_1 + X_2 + \cdots + X_n \rightarrow E(X_n)$ (1) as $n \rightarrow \infty$ with probability 1 (be careful: this is not quite point wise convergence; read about almost sure convergence).
By the strong law of large numbers, the average of n observations of X_1, \ldots, X_n tends to EX_n for large n.

That is,

$$\frac{X_1 + X_2 + \cdots + X_n}{n} \to E(X_n)$$

as $n \to \infty$ with probability 1 (be careful: this is not quite point wise convergence; read about almost sure convergence).
By the strong law of large numbers, the average of n observations of X_1, \ldots, X_n tends to EX_n for large n.

That is,

$$\frac{X_1 + X_2 + \cdots + X_n}{n} \to E(X_n)$$

as $n \to \infty$ with probability 1 (be careful: this is not quite point wise convergence; read about almost sure convergence).

End
Try the Maple program below using various values of \(n \) for the Uniform distribution and the Normal distribution.
Try the Maple program below using various values of n for the Uniform distribution and the Normal distribution.

```maple
restart;
with(Statistics):
X := RandomVariable(Uniform(0, 1));
X := RandomVariable(Normal(0, 1));
Mean(X);
Sample(X, 2);
Sample(X, 1);

k := 100;
x := 0;
for i from 1 to k do m := Sample(X, 1);
x := x + m[1];
do:
x/k;
```

```
Try the Maple program below using various values of \( n \) for the Uniform distribution and the Normal distribution.

```maple
restart;
with(Statistics):
#X := RandomVariable(Uniform(0, 1));
X := RandomVariable(Normal(0, 1));
Mean(X);
Sample(X, 2);
Sample(X, 1);

k:=100;
x:=0;
for i from 1 to k do
 m:=Sample(X, 1);
x:=x+m[1];
end:
x/k;

End
```
Example 7.3: A “type I counter” is used to measure radioactive decay. Decays occur at random, at an unknown rate, and the purpose of the counter is to determine the decay rate. Due to the mechanism in the counter, each decay observed locks the counter for a \( a = 3 \times 10^{-9} \) seconds, during which additional decays are not detected.
Example 7.3: A “type I counter” is used to measure radioactive decay. Decays occur at random, at an unknown rate, and the purpose of the counter is to determine the decay rate. Due to the mechanism in the counter, each decay observed locks the counter for \( a := 3 \times 10^{-9} \) seconds, during which additional decays are not detected.

How should the data received be adjusted to compensate for missed decays during these periods?
Example 7.3: A “type I counter” is used to measure radioactive decay. Decays occur at random, at an unknown rate, and the purpose of the counter is to determine the decay rate. Due to the mechanism in the counter, each decay observed locks the counter for $t := 3 \times 10^{-9}$ seconds, during which additional decays are not detected.

How should the data received be adjusted to compensate for missed decays during these periods?

End
Variables: $\lambda =$ decay rate (decays/second) $T_n =$ time of nth observed decay (seconds)
Variables: $\lambda =$ decay rate (decays/second) $T_n =$ time of $n$th observed decay (seconds)

Assumptions: Radioactive decays occur at random with rate $\lambda$. $T_{n+1} - T_n \geq 3 \times 10^{-9}$. Times between successive decays are independent and identically distributed: the distribution is assumed to be exponential with rate parameter $\lambda$. 

Objective: Find (or estimate) $\lambda$ on the basis of finitely many observations $T_1, \ldots, T_n$. 

End
Variables: \( \lambda \) = decay rate (decays/second) \( T_n \) = time of \( n \)th observed decay (seconds)

Assumptions: Radioactive decays occur at random with rate \( \lambda \). \( T_{n+1} - T_n \geq 3 \times 10^{-9} \). Times between successive decays are independent and identically distributed: the distribution is assumed to be exponential with rate parameter \( \lambda \).

Objective: Find (or estimate) \( \lambda \) on the basis of finitely many observations \( T_1, \ldots, T_n \).
Variables: \( \lambda \) = decay rate (decays/second) \( T_n \) = time of nth observed decay (seconds)

Assumptions: Radioactive decays occur at random with rate \( \lambda \). \( T_{n+1} - T_n \geq 3 \times 10^{-9} \). Times between successive decays are independent and identically distributed: the distribution is assumed to be exponential with rate parameter \( \lambda \).

Objective: Find (or estimate) \( \lambda \) on the basis of finitely many observations \( T_1, \ldots, T_n \).
Objective: Find (or estimate) $\lambda$ on the basis of finitely many observations $T_1, \ldots, T_n$. 
Objective: Find (or estimate) $\lambda$ on the basis of finitely many observations $T_1, \ldots, T_n$.

Model formulation: We assume that the time between successive decays has an exponential distribution with rate $\lambda$. 
Objective: Find (or estimate) $\lambda$ on the basis of finitely many observations $T_1, \ldots, T_n$.

Model formulation: We assume that the time between successive decays has an exponential distribution with rate $\lambda$.

The time between observations for $n > 1$ is $X_n = T_n - T_{n-1}$ (for $n = 1$ we take $X_1 = T_1$).
Objective: Find (or estimate) $\lambda$ on the basis of finitely many observations $T_1, \ldots, T_n$.

Model formulation: We assume that the time between successive decays has an exponential distribution with rate $\lambda$.

The time between observations for $n > 1$ is $X_n = T_n - T_{n-1}$ (for $n = 1$ we take $X_1 = T_1$).

The random time $X_n$ consists of $a = 3 \times 10^{-9}$ seconds of lock time, and then a waiting period from then until the first decay after it comes unlocked.
Objective: Find (or estimate) $\lambda$ on the basis of finitely many observations $T_1, \ldots, T_n$.

Model formulation: We assume that the time between successive decays has an exponential distribution with rate $\lambda$.

The time between observations for $n > 1$ is $X_n = T_n - T_{n-1}$ (for $n = 1$ we take $X_1 = T_1$).

The random time $X_n$ consists of $a = 3 \times 10^{-9}$ seconds of lock time, and then a waiting period from then until the first decay after it comes unlocked.

Let $Y_n$ denote this second part $X_n = a + Y_n$. 
Objective: Find (or estimate) $\lambda$ on the basis of finitely many observations $T_1, \ldots, T_n$.

Model formulation: We assume that the time between successive decays has an exponential distribution with rate $\lambda$.

The time between observations for $n > 1$ is $X_n = T_n - T_{n-1}$ (for $n = 1$ we take $X_1 = T_1$).

The random time $X_n$ consists of $a = 3 \times 10^{-9}$ seconds of lock time, and then a waiting period from then until the first decay after it comes unlocked.

Let $Y_n$ denote this second part $X_n = a + Y_n$.

End
Because of the memoryless property, \( Y_n \) is also exponentially distributed with parameter \( \lambda \).
Because of the memoryless property, $Y_n$ is also exponentially distributed with parameter $\lambda$.

To see this note that

$$Pr(X > t + a | X > a) = Pr(X > t)$$

by the memoryless property.
Because of the memoryless property, $Y_n$ is also exponentially distributed with parameter $\lambda$.

To see this note that

$$Pr(X > t + a | X > a) = Pr(X > t)$$

by the memoryless property.

On the otherhand, if $X = a + Y$ then

$$Pr(X > t + a | X > a) = Pr(Y + a > t + a | Y + a > a) = Pr(Y > t)$$

thus $X_n$ and $Y_n$ have the same distribution.
Because of the memoryless property, $Y_n$ is also exponentially distributed with parameter $\lambda$.

To see this note that

$$Pr(X > t + a | X > a) = Pr(X > t)$$

by the memoryless property.

On the other hand, if $X = a + Y$ then

$$Pr(X > t + a | X > a) = Pr(Y + a > t + a | Y + a > a) = Pr(Y > t)$$

thus $X_n$ and $Y_n$ have the same distribution.
Solve the model: By the strong law of large numbers, the average of \( n \) observations of \( X_1, \ldots, X_n \) tends to \( EX_n \) for large \( n \).
Solve the model: By the strong law of large numbers, the average of $n$ observations of $X_1, \ldots, X_n$ tends to $EX_n$ for large $n$.

That is,

$$\frac{X_1 + X_2 + \cdots + X_n}{n} \to E(X_n) = E(a + Y_n) \quad (2)$$

$$= a + E(Y_n) \quad (3)$$

$$= a + 1/\lambda \quad (4)$$

as $n \to \infty$ with probability 1 (almost surely).
Solve the model: By the strong law of large numbers, the average of \( n \) observations of \( X_1, \ldots, X_n \) tends to \( EX_n \) for large \( n \).

That is,

\[
\frac{X_1 + X_2 + \cdots + X_n}{n} \to E(X_n) = E(a + Y_n) = a + E(Y_n) = a + 1/\lambda
\]

as \( n \to \infty \) with probability 1 (almost surely).

Since \( X_1 + \cdots + X_n = T_n \), we have found that for large \( n \), \( (T_n)/n \) is close to \( a + 1/\lambda \).
Solve the model: By the strong law of large numbers, the average of \( n \) observations of \( X_1, \ldots, X_n \) tends to \( E X_n \) for large \( n \).

That is,

\[
\frac{X_1 + X_2 + \cdots + X_n}{n} \to E(X_n) = E(a + Y_n) = a + E(Y_n) = a + 1/\lambda
\]

as \( n \to \infty \) with probability 1 (almost surely).

Since \( X_1 + \cdots + X_n = T_n \), we have found that for large \( n \), \( (T_n)/n \) is close to \( a + 1/\lambda \).

Solving for lambda, we obtain

\[
\lambda = \frac{n}{(T_n - na)}.
\]
Solve the model: By the strong law of large numbers, the average of \( n \) observations of \( X_1, \ldots, X_n \) tends to \( EX_n \) for large \( n \).

That is,
\[
\frac{X_1 + X_2 + \cdots + X_n}{n} \to E(X_n) = E(a + Y_n) = a + E(Y_n) = a + 1/\lambda
\]
as \( n \to \infty \) with probability 1 (almost surely).

Since \( X_1 + \cdots + X_n = T_n \), we have found that for large \( n \), \( (T_n)/n \) is close to \( a + 1/\lambda \).

Solving for lambda, we obtain
\[
\lambda = \frac{n}{(T_n - na)}.
\]

End
Conclusion:

To use the instrument to gauge a decay rate, we measure a large number of decays, take the total time until the nth observed decay $T_n$ and plug into the formula $\lambda = n\frac{T_n}{n-a}$. 

End
Conclusion:

To use the instrument to gauge a decay rate, we measure a large number of decays, take the total time until the nth observed decay $T_n$, and plug into the formula

$$\lambda = \frac{n}{T_n - na}.$$

Conclusion:
To use the instrument to gauge a decay rate, we measure a large number of decays, take the total time until the nth observed decay $T_n$, and plug into the formula

$$\lambda = \frac{n}{T_n - na}.$$