2.3 Linear 1st order

\[a(x) y' + a_0(x) y = g(x) \]

Standard form:
(A) \[y' + P(x) y = f(x) \]
claim: \(y \) is a soln of (A) if and only if it solves (B) and/or (C).

(B) \[y' e^{ \int P(x) dx } + P(y)e^{ \int P(x) dx } = f(x)e^{ \int P(x) dx } \]

(C) \[\frac{d}{dx}(y e^{ \int P(x) dx }) = f(x)e^{ \int P(x) dx } \]
The term \(e^{\int P(x)\,dx} \) is called the integrating factor or I.F.

for \(y' + P(x)y = f(x) \)

Consider

(i) \(\frac{dP}{dt} = P(P-5) \)

(ii) \(\frac{dy}{dx} + 7xy = x^2 \)

(iii) \(\frac{dy}{dx} = 7xy \)

which can be solved by the I.F. method?

which can be solved by the separable variables method?
1st order DE's

- Solvable by Separable Variables
- Solvable by I.F. method
Solve

\[xy' + 3x^3y' = x^3 \]

Soln: The recommended process is to start with equation (C) on page 1.

Process

1. Put D.E. in Std. Form
2. Identify \(P(x) \) and determine \(e^{\int P(x)dx} \), the I.F.
3. Write eq'n (C)...
 \[
 \frac{d}{dx}(y e^{\int P(x)dx}) = f(x) e^{\int P(x)dx}
 \]
4. Solve the D.E. above
Solve \(xy' + 3x^3 y = x^3 \)

Solution:

1) **Standard Form** \(y' + 3x^2 y = x^2 \)

2) \(P(x) = 3x^2 \) so I.F. = \(e^{\int 3x^2 \, dx} \)

3) **Equation (c)**

\[
\frac{d}{dx}(ye^{x^3}) = x^2 e^{x^3}
\]

4) \(ye^{x^3} = \frac{1}{3} e^{x^3} + c \)

So \(y = \frac{1}{3} + ce^{-x^3} \)

The solution.
\[\begin{cases} \frac{dy}{dx} + \frac{1}{x} y = e^x \\ y(1) = 2 \end{cases} \]

1) \[y' + \frac{1}{x} y = \frac{e^x}{x} \]

2) \[P(x) = \frac{1}{x} \text{ so I.F.} = e^{\int \frac{dx}{x}} = e^{\ln|x|} = |x| \]

Because of the I.C. \(y(1) = 2 \)

we use the interval \((0, \infty) \)

so I.F. = \(x \).

3) \[\frac{d}{dx}(xy) = xe^x = e^x \]

4) \[xy = e^x + c \]

\[y = \frac{e^x}{x} + \frac{c}{x} \]

solution of D.E.
Continuation:

Now we solve the I. V. P. That is, we fit the I.C.

\[y'(1) = 2 \]

The solution of the DE is

\[y = \frac{e^x}{x} + \frac{c}{x} \]

\[2 = y(1) = \frac{e^1}{1} + \frac{c}{1} \quad \therefore c = 2 - e \]

So the solution of I.V.P. \[y = \frac{e^x}{x} + \frac{2-e}{x} \]
2.3 General Terminology

Given

(D) \[y' + P(x)y = f(x) \]

the new DE

(E) \[y' + P(x)y = 0 \] is called

the associated homogeneous DE

Let's find the general sol'n of (D)

\[
\frac{d}{dx}(y e^{\int P(x) dx}) = f(x) e^{\int P(x) dx}
\]

\[y = e^{-\int P(x) dx} \int f(x) e^{\int P(x) dx} \, dx + ce^{-\int P(x) dx} \]

is a one-parameter family of sol'n.s.

It is called the general sol'n of (D).
\[y = e^{-Spdx} \int f(x) e^{Spdx} \, dx + ce^{-Spdx} \]

\[y = y_c + y_p \quad \text{(general soln of (D))} \]

\[y_c \text{ solve (E)} \]

\[y_c \text{ is called the complementary soln} \]

\[y_p \text{ is called the particular soln.} \]

\[y_p \text{ solves (D) but is not the general soln.} \]
\[y' + y = x \]

2) \(p(x) = 1 \), so I.F. = \(e^{\int p(x) \, dx} = e^x \)

3) \(\frac{dy}{dx}(y e^x) = x e^x \)

4) \(y e^x = \int x e^x \, dx \)
\[\text{Integration by parts.} \]

So \(y e^x = x e^x - e^x + c \)

\(y = (x e^x - e^x + c) e^{-x} \)

\(y = \frac{x - 1 + c e^{-x}}{y_e} \)