4.3

- Linear
 - Constant coefficient
 - Homogeneous

In the language of Section 4.1, we now study how to construct fundamental solution sets for the type of DE stated.

In Section 4.4 we will consider non-homogeneous linear DE's. We will (at that time) need more terminology from 4.1.
Recall 1st order:
\[ay'' + by' = 0 \]
\[y' + \frac{b}{a}y = 0 \]

\[\text{PCW constant} \]
\[\text{Speedy} \]
\[\frac{b}{a}x \]

I.F. = \(e^{\int \frac{b}{a}x} = e^{\frac{b}{a}x} \)
\[
\frac{d}{dx}(ye^{\frac{b}{a}x}) = 0 \cdot e^{\frac{b}{a}x} = 0
\]

\[ye^{\frac{b}{a}x} = c \]
\[y = ce^{-\frac{b}{a}x} \]

A soln:
\[y' + ry = 0 \]

\[y = e^{-rx} \]

(a fundamental set?)
Guess solutions of
\[ay'' + by' + cy = 0 \]
have the form \(y = e^{mx} \)

\[a[e^{mx}]'' + b[e^{mx}]' + c[e^{mx}] = 0 \]

\[am^2e^{mx} + bem^{x} + ce^{mx} = 0 \]

\[(am^2 + bm + c)e^{mx} = 0 \]

\[[true \iff \text{only if}] \]

\[am^2 + bm + c = 0 \]

Conclusion: \(y = e^{mx} \)

solves \(ay'' + by' + cy = 0 \)

\[\iff \text{if and only if} \]

solves \(am^2 + bm + c = 0 \)

auxiliary equation
The DE
\[ay'' + by' + cy = 0 \]
has auxiliary eqn \[am^2 + bm + c = 0 \]
\[y = e^{mx} \] solves \((*)\) if and only if \(m \) solves \((***)\).

case 1: \[am^2 + bm + c = 0 \]
has distinct real roots \(m_1 \) and \(m_2 \).
then solutions are \(y_1 = e^{m_1x} \), \(y_2 = e^{m_2x} \)
General solution: \(y = c_1 e^{m_1x} + c_2 e^{m_2x} \)
Case 2: \(am^2 + bm + c = 0 \)
has repeated real root \(m_1 \).
\(y_1 = e^{m_1 x} \) to get a
2nd soln use the method of Section 4.02 (reduction of order method)
Case 3 \[an^2 + bn + c = 0 \]
has complex roots (necessarily a conjugate pair)

\[m_1 = \alpha + \beta i \quad m_2 = \alpha - \beta i \]
\[e^{m_1 x} = e^{(a + bi)x} \]
\[= e^{\alpha x} (\cos \beta x + i \sin \beta x) \]
\[\frac{e^{m_2 x}}{e^{(\alpha - \beta) x}} = e^{\alpha x} (\cos \beta x - i \sin \beta x) \]
\[e^{m_1 x}, e^{m_2 x} \text{ solns} \]
\[\Rightarrow e^{m_1 x} + e^{m_2 x} \text{ is a soln} \]

\[e^{m_1 x}, e^{m_2 x} \text{ solns} \]
\[\Rightarrow e^{m_1 x} - e^{m_2 x} \text{ is a soln} \]
\[\Rightarrow \]
Summary

\[ay'' + by' + cy = 0 \]
\[am^2 + bm + c = 0 \]

If the zeros of the auxiliary equation are:

1) real \(m_1 \neq m_2 \) then

\[y = c_1 e^{m_1 x} + c_2 e^{m_2 x} \]

2) real repeated (zero) \(m \) then

\[y = c_1 e^{mx} + c_2 xe^{mx} \]

3) complex \(\alpha + \beta i \) and \(\alpha - \beta i \)

then

\[y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x \]

are the general solutions.