Smooth Nielsen periodic point theory

Grzegorz Graff & Jerzy Jezierski

Gdansk University of Technology & Warsaw University of Life Sciences

Nielsen Theory and Related Topics 2009
1. Introduction

2. Fixed point indices of iterations

3. Simply-connected case.

4. Computations of the invariant

5. Non simply-connected case

6. Reidemeister Graph

7. Plans for the future
Let M be a compact, connected manifold, $f : M \to M$ continuous.

The classical problem in the fixed point theory is to find minimal number of fixed points in the homotopy class of f. *Nielsen number* $N(f)$, by the definition, is a topological invariant that gives the lower bound for the number of fixed points in the homotopy class of f:

$$\forall g \sim f \quad \#\text{Fix}(g) \geq N(f).$$
The question, posed by Nielsen, is whether this is the best lower bound, i.e.

\[\exists g \sim f \quad \# \text{Fix}(g) = N(f) ? \]

was answered positively by Wecken in 1942, for manifolds with dimension at least 3.
Estimation of the number of periodic points

The problem may be formulated more generally: could one defined a topological invariant which allows to estimate from below the number periodic points.

Let $r \in \mathbb{N}$ be fixed, such an invariant should be less or equal

$$\min_{g \sim f} \#\text{Fix}(g^r).$$
Nielsen type number of period r

In 1983 Boju Jiang defined *Nielsen type number of period r*, $NF_r[f]$, and showed that this is homotopy invariant and lower bound for the number of r-periodic points in homotopy class of f:

$$\forall g \sim f \quad \#\text{Fix}(g^r) \geq NF_r[f].$$

J. Jezierski in 2000-3 r. proved that if $\dim M \geq 3$, then this is the best lower bound:

$$\exists g \sim f \quad \#\text{Fix}(g^r) = NF_r[f],$$

which means that $NF_r[f]$ is the minimal number of r-periodic points in the homotopy class of f:

$$NF_r[f] = \min_{g \sim f} \#\text{Fix}(g^r).$$
The aim of smooth Nielsen periodic point theory is to define and calculate a topological invariant that would be a counterpart of $NF_r[f]$ in smooth category (C^1), i.e. the invariant of smooth homotopy: \sim:

$$\min_{g \sim f} \# \text{Fix}(g^r) = ?$$
It turned out that this problem is strictly related to the question what are possible forms of local indices (at an isolated fixed point) of iterations of maps homotopic to f.
Fixed point index

- $\text{ind}(f, x_0) \in \mathbb{Z}$ - topological invariant used to detect fixed points - geometrically it describes how many times $id - f$ "winds" the neighborhood of 0 around this point - locally $\text{deg}(id - f, 0)$.
- In the problem of minimizations of fixed points the crucial role plays the sequence of indices of iterations

$$\text{ind}\{ (f^n, x_0) \}_{n=1}^{\infty},$$

(provided it is well-defined).
Can \(\text{ind}\{(f^n, x_0)\}_{n=1}^{\infty} \) take any integer values?

In 1971 Krasnosel’skii and Zabreiko noticed that (for continuous maps) for any prime number \(p \) holds:

\[
\text{ind}(f, x_0) \equiv \text{ind}(f^p, x_0) \pmod{p}.
\]

In 1984 A. Dold found much more general congruences for indices, called Dold relations:

\[
\sum_{k \mid n} \mu(n/k)\text{ind}(f^k, x_0) \equiv 0 \pmod{n},
\]

where \(\mu \) is the Möbius function.
Definicja

For a given $k \in \mathbb{N}$ we define

\[
\text{reg}_k(n) = \begin{cases}
 k & \text{if } k \mid n, \\
 0 & \text{if } k \nmid n.
\end{cases}
\]

In other words, \(\text{reg}_k\) is the periodic sequence:

\[(0, \ldots, 0, k, 0, \ldots, 0, k, \ldots),\]

where the non-zero entries appear for indices divisible by \(k\).
Periodic expansion

A sequence of indices of iterations has the so-called periodic expansion,

$$\text{ind}(f^n, x_0) = \sum_{k=1}^{\infty} a_k \text{reg}_k(n),$$

where

$$a_n = \frac{1}{n} \sum_{k|n} \mu(n/k) \text{ind}(f^k, x_0),$$

μ is the Möbius function.

As a result, by Dold relations,

$$a_n \in \mathbb{Z}.$$
Restrictions for indices of continuous maps

Are there any further restrictions, except for Dold relations, for local indices of a continuous map $f : \mathbb{R}^m \to \mathbb{R}^m$?

In dimension $m = 1$ there are just few sequences of indices of a very special form.

For $m \geq 2$ there are no further restrictions, i.e. every sequence which satisfies Dold relations can be realized as a sequence of indices of iterations of some continuous map (Babenko, Bogatyi: $m \geq 3$, GG & P. Nowak-Przygodzki 2003: $m = 2$).
Chow, Mallet-Paret and Yorke showed in 1981 that there are very strong restrictions for \(\{\text{ind}(f^n, 0)\}_{n=1}^\infty \), if \(f \) is a \(C^1 \) map, and conjectured that there are no more restrictions.

GG and P. Nowak-Przygodzki (2006) confirmed the conjecture and listed all sequences of integers that could be indices of iterations of a smooth map in \(\mathbb{R}^3 \).
Let M be a compact, smooth manifold of dimension ≥ 3.

Boju Jiang in 1981 [Fixed point classes from a differential viewpoint] proved that Nielsen fixed point theory for smooth and continuous maps coincide.

This means that if f is a smooth map, then it can always be smoothly deformed to a map g with only $N(f)$ fixed points.

But it turns out that the smooth periodic points theory is quite different from the continuous one and the strong differences hold even in the simply-connected case.
Simply-connected continuous case

Assume additionally that M is simply-connected. First study classical (continuous) category.

Theorem

Let r be fixed natural number. Any continuous self-map f of M is homotopic to a map g such that

$$\text{Fix}(g^r) = \begin{cases} \emptyset & \text{if } L(f^n) = 0 \text{ for all } n \mid r, \\ \{*\} & \text{otherwise}, \end{cases}$$

where $\{*\} = \text{Fix}(g)$ denotes the set which consists of one point.
Example

The antipodal map of S^3 is homotopic to a map which has only one fixed point.
Reducing $\text{Fix}(f^r)$ to a single point.
Assume that a self-map f of M is homotopic to a smooth map g with $\text{Fix}(g^r) = \{\ast\}$, then for every $n|r$ we have:

$$L(f^n) = L(g^n) = \text{ind}(g^n) = \text{ind}(g^n, \ast).$$

As a consequence, the necessary condition under which f is smoothly homotopic to a map with one fixed point is that the sequence of Lefschetz numbers $\{(L(f^n))_{n|r}\}$ must be locally realized as a sequence of fixed point indices at an isolated fixed point \ast.

But these sequences have very special form! [by Chow, Mallet-Paret, York theorem], so it could take place only in some special cases, unlike the continuous case.
Sufficient condition

The necessary condition turns out to be the sufficient condition, so if

\[\{(L(f^n))_{n|r} = \{\text{ind}(h^n, x_0)\}_{n|r} \]

for some \(x_0 \) and smooth \(h \),

then \(f \) is smoothly homotopic to a map with one fixed point.
The idea of the proof

Creating Procedure enables one to create an additional orbit in the homotopy class of f, by a homotopy f_t which is constant near periodic points of f (up to the given period r) and such that f_1 near the created orbit may be given by an arbitrarily prescribed formula.

Canceling Procedure enables one to remove in the homotopy class subsets of periodic points which have indices of iterations equal to zero.
Application of the procedures

Using Creating Procedure we create a fixed point x_0 such that
$$\{(L(f^n))_{\, n \mid r} = \{\text{ind}(h^n, x_0)\}_{\, n \mid r}.\]

Now f_1 has more periodic points: except of the old ones Old there is $\{x_0\}$ and the ones which were added during the deformation Def.

As $\{(\text{ind}(h^n, x_0))_{\, n \mid r}$ realized Lefschetz numbers, the indices of $\text{Old} \cup \text{Def}$ are equal to zero and so may be removed by Canceling Procedure.
What is happening if the condition is not satisfied?

Then we seek for the representation of \(\{(L(f^n))_n\mid r \} \) as the minimal sum of sequences of indices of iterations realized on fixed points or periodic orbits.
We decompose

\[
\{(L(f^n))_n \mid r = c_1(n) + \ldots + c_s(n),
\]

where \(c_i = \text{ind}(h_i^n, P_i) \), \(P_i \) denotes some \(l_i \)-orbit.

Each such decomposition determines the number \(l = l_1 + \ldots + l_s \).
We define the number \(D_r^m[f] \), *periodic Dold number of the order* \(r \),
as the smallest \(l \) which can be obtained in this way.
Theorem

\(D^m_r[f] \) is the invariant we looked for:

\[
\min_{g \sim f} \# \text{Fix}(g^r) = D^m_r[f].
\]

In other words \(D^m_r[f] \) is the best lower bound for \(\# \text{Fix}(g^r) \) for \(g \) in the smooth homotopy class of \(f \).
Three things needed to compute the invariant

\[\{ (L(f^n))_{n|r} = c_1(n) + \ldots + c_s(n), \]

each \(c_i(n) \) has the form \(\sum_{k=1}^{\infty} a_k \text{reg}_k(n) \).

- [1] We should know what is the exact form of \(c_i(n) \), i.e. know the list of sequences of local indices.
- [2] We have to know the right hand-side of the above formula, i.e periodic expansion of Lefschetz numbers.
- [3] Finally, we should solve the combinatorial problem: what is the minimal number of sequences \(c_i(n) \) that gives \(\{ (L(f^n))_{n|r} \).
Indices of iterations in dimension 3

Theorem

Item [1], known in \mathbb{R}^3, below the list of all sequences of indices in dimension 3:

(A) $c_A(n) = a_1\text{reg}_1(n) + a_2\text{reg}_2(n)$,
(B) $c_B(n) = \text{reg}_1(n) + a_d\text{reg}_d(n)$,
(C) $c_C(n) = -\text{reg}_1(n) + a_d\text{reg}_d(n)$,
(D) $c_D(n) = a_d\text{reg}_d(n)$,
(E) $c_E(n) = \text{reg}_1(n) - \text{reg}_2(n) + a_d\text{reg}_d(n)$,
(F) $c_F(n) = \text{reg}_1(n) + a_d\text{reg}_d(n) + a_{2d}\text{reg}_{2d}(n)$, where d is odd,
(G) $c_G(n) = \text{reg}_1(n) - \text{reg}_2(n) + a_d\text{reg}_d(n) + a_{2d}\text{reg}_{2d}(n)$, where d is odd.
Computing of $D^3_r[f]$

Item [2], periodic expansion for Lefschetz numbers is known for some type of 3-manifolds. For these manifolds we was able to execute the task described in item [3], so find $D^3_r[f]$. $D^3_r[f]$ was computed for:

- $S^2 \times I$,
- S^3,
- two-holed 3-dimensional closed ball.
Invariant of the space

$D_r^3[f]$ is often almost independent of f, it is insensitive to the homotopy class of f.

For example, if r is odd and f is a self-map of S^3 with $|\text{deg}(f)| > 1$, then $D_r^3[f] \in \{\zeta(r) - 1, \zeta(r)\}$, where $\zeta(r)$ is the number of divisors of r.

This follows from the simply-connectedness of S^3 and fast grow of Lefschetz numbers of iterations.

As a consequence, in some cases $D_r^3[f]$ may be perceived as an invariant of the whole space rather than of the homotopy class of f.
Orbits of Reidemeister classes $\text{OR}(f^k)$

For each pair of numbers $l|k$ we define $i_{k,l} : \text{OR}(f^l) \to \text{OR}(f^k)$.

If $N^l \subset \text{Fix}(f^l)$, $N^k \subset \text{Fix}(f^k)$ are Nielsen classes representing Reidemeister classes $A^l \subset \text{OR}(f^l)$ and $A^k \subset \text{OR}(f^k)$ respectively, then $N^l \subset N^k$ implies $i_{k,l}(A^l) = A^k$.
Orbits of Reidemeister classes $\mathcal{OR}(f^k)$

Definition

We say that for two orbits of Reidemeister classes $A \in \mathcal{OR}(f^k)$ and $B \in \mathcal{OR}(f^l)$, B is preceding A if $l|k$ and $i_{k,l}(B) = A$.

We write then $B \preceq A$ ($B \prec A$ if $B \preceq A$ but $A \neq B$).

The depth of an orbit A is the smallest l such that A belongs to the image of $i_{k,l}$.
Definition

For $B \in OR(f^k)$ we define the function $Reg_B : OR_\infty(f) \rightarrow \mathbb{Z}$ putting

$$Reg_B(A) = \begin{cases}
k & \text{for } B \leq A, \\
0 & \text{otherwise.} \end{cases}$$
Generalized periodic expansion

There exist unique numbers $a_B \in \mathbb{Z}$ such that

$$\text{ind}(f^n; A) = \sum_B a_B \cdot \text{Reg}_B(A)$$

for all $A \in \mathcal{OR}(f^n)$.

We may create a periodic orbit in each orbit of Reidemeister classes H, which gives the sequence of indices c of a given admissible pattern (which comes from locally smooth map).
The sequence c gives impact to Reidemister orbits

$$C_H(A) = \begin{cases} \ c(n) & \text{for } H \preceq A; A \in OR(f^n), \\ \ 0 & \text{otherwise}. \end{cases}$$ \hspace{1cm} (1)$$

We say then that the sequence c is *attached* at the orbit $H \in OR(f^h)$.
Invariant $NJ D^m_r[f]$

\[
\text{ind}(f^n; A) = \sum_B a_B \text{Reg}_B = C_{H_1} + \cdots + C_{H_s},
\]

where C_{H_i} corresponds to the sequence c_i attached at the class $H_i \in OR(f^{h_i})$.

Grzegorz Graff & Jerzy Jezierski
Smooth Nielsen periodic point theory
Invariant $\text{NJD}^m_r[f]$

Definition

We define $\text{NJD}^m_r[f]$, the Nielsen-Jiang-Dold number, by:

$$\text{NJD}^m_r[f] = \text{minimal sum } h_1 + \cdots + h_s,$$

such that the above equality holds.
Consider a directed graph in which vertices are orbits of Reidemeister classes and a (unique) directed edge from B to A corresponds to the relation $B \prec A$.

If we associate with each vertex $A \in OR(f^k)$ the number a_A from the generalized periodic expansion then we get, Reidemeister graph $GOR(f)$.
For a fixed integer r we denote by $GOR(f; r)$ the full subgraph whose vertices are elements of $OR(f^k)$ for $k|r$.

$GOR(f; r)$ carries all data needed to determine $NJD_r[f]$.

Grzegorz Graff & Jerzy Jezierski
Smooth Nielsen periodic point theory
$NF_r(f)$ versus $NJD_r[f]$

If f is a continuous map, then the minimal number of points in $\text{Fix}(g')$ for all g homotopic to f is equal to $NF_r(f)$ - the classical invariant introduced by Jiang.

What is the difference between $NF_r(f)$ and $NJD_r[f]$?

It could be explained by a use of Reidemeister graph.
First, we briefly remind the definition of $NF_r(f)$. We call a subset $S \subset OR_r(f)$ *Preceding System* if each essential orbit in $OR_r(f)$ is preceded by an orbit in S.
Definition

S is called *Minimal Preceding System* (MPS) if the sum of the depth of elements in S

$$\sum_{H \in S} d(H)$$

is minimal.

The number $NF_r(f)$ is defined as the above least sum i.e. the sum of depth of orbits in an MPS.
Now, notice that for calculating $NF_r(f)$ we do not care about the values of indices at vertices of the graph, the only information we need is whether the indices are non-zero (the class is essential) or not.

Calculating $NJD_r[f]$ we have to realize also indices in each vertex B, which are expressed by the coefficients a_B at Reg_B.
If, during the calculation of $\text{NJD}_r[f]$, we attach in each H of a given MPS some admissible sequence, that may be not enough, because some coefficients a_B at Reg_B may be not realized.

As a consequence, usually $\text{NJD}_r[f] > NF_r(f)$ and the equality holds only in very special situations.
Example

Let \(f : \mathbb{RP}^3 \to \mathbb{RP}^3 \) be a map of degree \(d = 3 \).

Let us fix \(r = 6 \). Then \(OR(f^n) = \mathbb{Z}_2 \), and we can draw the following Reidemeister graph:
Real Projective space
Real Projective space

It follows from the graph that the (unique) MPS is \(\{1', 1'', 2''\} \), hence

\[
NF_6(f) = 1 + 1 + 2 = 4.
\]

On the other hand,

\[
NJD_6[f] = 7.
\]
Summary

<table>
<thead>
<tr>
<th>Manifold M</th>
<th>homotopy</th>
<th>"obstacle"</th>
<th>invariant</th>
</tr>
</thead>
<tbody>
<tr>
<td>simply-connected</td>
<td>continuous</td>
<td>none</td>
<td>$\mathcal{NF}_r \in {0, 1}$</td>
</tr>
<tr>
<td>non-simply-connected</td>
<td>continuous</td>
<td>$\pi_1(M)$</td>
<td>\mathcal{NF}_r</td>
</tr>
<tr>
<td>simply-connected</td>
<td>smooth</td>
<td>indices</td>
<td>\mathcal{D}_r</td>
</tr>
<tr>
<td>non-simply-connected</td>
<td>smooth</td>
<td>$\pi_1(M)$ and ind.</td>
<td>\mathcal{NJD}_r</td>
</tr>
</tbody>
</table>
Publications

Computer programs

The definitions of $D_r^m[f]$ and $NJD_r^m[f]$ have operational character and in many cases may be reduced to combinatorial procedure.

As a result, very promising would be create algorithms which allow to device a computer program to calculate the invariants.
Our team (GG, J. Jezierski and P. Nowak-Przygodzki) is very close to give the description of indices of iterations for smooth self-maps of \mathbb{R}^m for any m.

This would allow us to calculate $D_r^m[f]$ and $NJD_r^m[f]$ for self-maps of manifolds of arbitrary dimension.
For two-dimensional manifolds, in general even $NF_r[f]$ is not the best lower bound for the number of r-periodic points.

Nevertheless, it would be interesting to investigate what is happening in the smooth category in dimension 2.