The R-infinity property for infra-nilmanifolds

Karel Dekimpe

K.U.Leuven Campus Kortrijk

joint with Pieter Penninckx

St. John’s June 10, 2009
The Reidemeister number and Almost–crystallographic groups

Pairs of maps between almost–crystallographic groups

2 and 3–dimensional crystallographic groups
The Reidemeister number and Almost–crystallographic groups

Pairs of maps between almost–crystallographic groups

2 and 3–dimensional crystallographic groups
The Reidemeister number and Almost–crystallographic groups
Pairs of maps between almost–crystallographic groups
2 and 3–dimensional crystallographic groups

The R-infinity property for infra-nilmanifolds

Topological background

∀a ∈ A(\tilde{X}, p_X), \tilde{f} \circ a is another lift of f
∀b ∈ A(\tilde{Y}, p_Y), b \circ \tilde{f} is another lift of f
We obtain a morphism of groups

f_x : A(\tilde{X}, p_X) → A(\tilde{Y}, p_Y) : a ↦ f_x(a) defined by \tilde{f} \circ a = f_x(a) \circ \tilde{f}
The Reidemeister number and Almost–crystallographic groups
Pairs of maps between almost–crystallographic groups
2 and 3–dimensional crystallographic groups

Topological background

\[
\begin{array}{ccc}
\tilde{X} & \overset{\tilde{f}}{\longrightarrow} & \tilde{Y} \\
p_X \downarrow & & \downarrow p_Y \\
X & \overset{f}{\longrightarrow} & Y
\end{array}
\]

\[
\forall a \in A(\tilde{X}, p_X), \quad \tilde{f} \circ a \text{ is another lift of } f
\]

\[
\forall b \in A(\tilde{Y}, p_Y), \quad b \circ \tilde{f} \text{ is another lift of } f
\]

We obtain a morphism of groups

\[
f_X : A(\tilde{X}, p_X) \to A(\tilde{Y}, p_Y) : a \mapsto f_X(a) \text{ defined by } \tilde{f} \circ a = f_X(a) \circ \tilde{f}
\]
The Reidemeister number and Almost-crystallographic groups
Pairs of maps between almost-crystallographic groups
2 and 3-dimensional crystallographic groups

Topological background

\[\begin{array}{ccc}
\tilde{X} & \xrightarrow{\tilde{f}} & \tilde{Y} \\
\downarrow{p_X} & & \downarrow{p_Y} \\
X & \xrightarrow{f} & Y
\end{array} \]

\[\forall a \in A(\tilde{X}, p_X), \tilde{f} \circ a \text{ is another lift of } f \]
\[\forall b \in A(\tilde{Y}, p_Y), b \circ \tilde{f} \text{ is another lift of } f \]

We obtain a morphism of groups

\[f_\times: A(\tilde{X}, p_X) \rightarrow A(\tilde{Y}, p_Y) : a \mapsto f_\times(a) \text{ defined by } \tilde{f} \circ a = f_\times(a) \circ \tilde{f} \]
Topological background

\[\forall a \in A(\tilde{X}, p_X), \tilde{f} \circ a \text{ is another lift of } f \]

\[\forall b \in A(\tilde{Y}, p_Y), b \circ \tilde{f} \text{ is another lift of } f \]

We obtain a morphism of groups

\[f_\times : A(\tilde{X}, p_X) \rightarrow A(\tilde{Y}, p_Y) : a \mapsto f_\times(a) \] defined by \(\tilde{f} \circ a = f_\times(a) \circ \tilde{f} \)
Let $f, g : X \rightarrow Y$ be maps.

$$\text{Coin}(f, g) = \{ x \in X \mid f(x) = g(x) \}.$$

For lifts $\tilde{f}, \tilde{g} : \tilde{X} \rightarrow \tilde{Y}$, we have that

$$p_X(\text{Coin}(\tilde{f}, \tilde{g})) \subseteq \text{Coin}(f, g)$$

and

$$\text{Coin}(f, g) = \bigcup_{\tilde{f}, \tilde{g}} p_X(\text{Coin}(\tilde{f}, \tilde{g})) = \bigcup \tilde{f} p_X(\text{Coin}(\tilde{f}, \tilde{g})).$$

\Rightarrow division of coincidence set into classes.

Karel Dekimpe

The R-infinity property for infra-nilmanifolds
Coincidence sets

Let $f, g : X \rightarrow Y$ be maps.

$$\text{Coin}(f, g) = \{ x \in X \mid f(x) = g(x) \}.$$

For lifts $\tilde{f}, \tilde{g} : \tilde{X} \rightarrow \tilde{Y}$, we have that

$$p_X(\text{Coin}(\tilde{f}, \tilde{g})) \subseteq \text{Coin}(f, g)$$

and

$$\text{Coin}(f, g) = \bigcup_{\tilde{f}, \tilde{g}} p_X(\text{Coin}(\tilde{f}, \tilde{g})) = \bigcup_{\tilde{f}} p_X(\text{Coin}(\tilde{f}, \tilde{g})).$$

\Rightarrow division of coincidence set into classes.
Let $\varphi, \psi : G_1 \to G_2$ be two morphisms. Determine equivalence relation on G_2:

$$g \sim g' \iff \exists h \in G_1 : g = \psi(h)g'\varphi(h)^{-1}$$

Equivalence classes are “Reidemeister classes”: $R[\varphi, \psi]$. Reidemeister number $R(\varphi, \psi) = \#R[\varphi, \psi]$.

Take $\varphi : G \to G$, then $R(\varphi) = R(\varphi, \text{Id})$.

G has the R_∞ property if and only if $R(\varphi) = \infty$ for all automorphisms φ.
Let $\varphi, \psi : G_1 \to G_2$ be two morphisms.

Determine equivalence relation on G_2:

\[g \sim g' \iff \exists h \in G_1 : g = \psi(h)g'\varphi(h)^{-1} \]

Equivalence classes are “Reidemeister classes”: $R[\varphi, \psi]$.

Reidemeister number $R(\varphi, \psi) = \#R[\varphi, \psi]$.

Take $\varphi : G \to G$, then $R(\varphi) = R(\varphi, \text{Id})$.

G has the R_{∞} property if and only if $R(\varphi) = \infty$ for all automorphims φ.

Karel Dekimpe

The R-infinity property for infra-nilmanifolds
Let $\varphi, \psi : G_1 \to G_2$ be two morphisms. Determine equivalence relation on G_2:

$$g \sim g' \iff \exists h \in G_1 : g = \psi(h)g'\varphi(h)^{-1}$$

Equivalence classes are “Reidemeister classes”: $\mathcal{R}[\varphi, \psi]$. Reidemeister number $R(\varphi, \psi) = \#\mathcal{R}[\varphi, \psi]$.

Take $\varphi : G \to G$, then $R(\varphi) = R(\varphi, \text{Id})$. G has the R_∞ property if and only if $R(\varphi) = \infty$ for all automorphisms φ.

Karel Dekimpe

The R-infinity property for infra-nilmanifolds
Back to topology

\[f, g : X \to Y \rightsquigarrow \tilde{f}, \tilde{g} : \tilde{X} \to \tilde{Y} \rightsquigarrow f_x, g_x : A(\tilde{X}, p_X) \to A(\tilde{Y}, p_Y) \]

Definition

\[R(f, g) = R(f_x, g_x). \]

Let \(\gamma \in A(\tilde{Y}, p_Y) \), then \(p_X(\text{Coin}(\gamma \circ \tilde{f}, \tilde{g})) \) is stable on the whole Reidemeister class of \(\gamma \).

Definition

\(p_X(\text{Coin}(\gamma \circ \tilde{f}, \tilde{g})) \) is coincidence class induced by the Reidemeister class \([\gamma] \).

Two different Reidemeister classes cannot induce the same non-empty coincidence class.
The Reidemeister number and Almost–crystallographic groups
Pairs of maps between almost–crystallographic groups
2 and 3–dimensional crystallographic groups

Back to topology

$f, g : X \rightarrow Y \rightsquigarrow \tilde{f}, \tilde{g} : \tilde{X} \rightarrow \tilde{Y} \rightsquigarrow f_\times, g_\times : A(\tilde{X}, p_X) \rightarrow A(\tilde{Y}, p_Y)$

Definition

$$R(f, g) = R(f_\times, g_\times).$$

Let $\gamma \in A(\tilde{Y}, p_Y)$, then $p_X(\text{Coin}(\gamma \circ \tilde{f}, \tilde{g}))$ is stable on the whole Reidemeister class of γ.

Definition

$p_X(\text{Coin}(\gamma \circ \tilde{f}, \tilde{g}))$ is coincidence class induced by the Reidemeister class $[\gamma]$.

Two different Reidemeister classes cannot induce the same non-empty coincidence class.
Back to topology

\[f, g : X \rightarrow Y \rightsquigarrow \tilde{f}, \tilde{g} : \tilde{X} \rightarrow \tilde{Y} \rightsquigarrow f_\times, g_\times : A(\tilde{X}, p_X) \rightarrow A(\tilde{Y}, p_Y) \]

Definition

\[R(f, g) = R(f_\times, g_\times). \]

Let \(\gamma \in A(\tilde{Y}, p_Y) \), then \(p_X(\text{Coin}(\gamma \circ \tilde{f}, \tilde{g})) \) is stable on the whole Reidemeister class of \(\gamma \).

Definition

\(p_X(\text{Coin}(\gamma \circ \tilde{f}, \tilde{g})) \) is coincidence class induced by the Reidemeister class \([\gamma]\).

Two different Reidemeister classes cannot induce the same non-empty coincidence class.
Crystallographic groups

Isom(ℝⁿ) = ℝⁿ × O(n)

Definition

A uniform and discrete subgroup $E \subseteq ℝⁿ × O(n)$ is a crystallographic group.

E torsionfree \leadsto Bieberbach group \leadsto Flat manifold $E \backslash ℝⁿ$.

Example:

$E = \left\langle \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \mathbb{I}_2 \right], \left[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \mathbb{I}_2 \right], \left[\begin{pmatrix} 0 & 1/2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right] \right\rangle$
The Reidemeister number and Almost–crystallographic groups
Pairs of maps between almost–crystallographic groups
2 and 3–dimensional crystallographic groups

First Bieberbach Theorem

Theorem (First Bieberbach Theorem)

\[E \text{ crystallographic} \Rightarrow E \cap \mathbb{R}^n \cong \mathbb{Z}^n \text{ is a lattice of } \mathbb{R}^n \text{ and } \frac{E}{(E \cap \mathbb{R}^n)} = \frac{E}{\mathbb{Z}^n} \text{ is finite.} \]

Short exact sequence:

\[1 \to \mathbb{Z}^n \to E \to F \to 1. \]

\(F \) = holonomy group

Remark: \(F \cong \{ A \in O(n) \mid \exists a \in \mathbb{R}^n : (a, A) \in E \} \).

In previous example: \(F = \left\{ I_2, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right\} \cong \mathbb{Z}_2 \).
First Bieberbach Theorem

Theorem (First Bieberbach Theorem)

E crystallographic $\Rightarrow E \cap \mathbb{R}^n \cong \mathbb{Z}^n$ is a lattice of \mathbb{R}^n and $E/(E \cap \mathbb{R}^n) = E/\mathbb{Z}^n$ is finite.

Short exact sequence:

$$1 \rightarrow \mathbb{Z}^n \rightarrow E \rightarrow F \rightarrow 1.$$

$F = \text{holonomy group}$

Remark: $F \cong \{A \in O(n) \mid \exists a \in \mathbb{R}^n : (a, A) \in E\}$.

In previous example: $F = \left\{ \mathbb{I}_2, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right\} \cong \mathbb{Z}_2$.

Karel Dekimpe

The R-infinity property for infra-nilmanifolds
First Bieberbach Theorem

Theorem (First Bieberbach Theorem)

\[E \text{ crystallographic} \Rightarrow E \cap \mathbb{R}^n \cong \mathbb{Z}^n \text{ is a lattice of } \mathbb{R}^n \text{ and } E/(E \cap \mathbb{R}^n) = E/\mathbb{Z}^n \text{ is finite.} \]

Short exact sequence:

\[1 \to \mathbb{Z}^n \to E \to F \to 1. \]

\(F = \text{holonomy group} \)

Remark: \(F \cong \{ A \in O(n) \mid \exists a \in \mathbb{R}^n : (a, A) \in E \} \).

In previous example: \(F = \{ \mathbb{I}_2, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \} \cong \mathbb{Z}_2 \).
Second Bieberbach Theorem

Theorem (Second Bieberbach Theorem)

Let $E_1, E_2 \subseteq \text{Isom}(\mathbb{R}^n)$ be crystallographic. If $\varphi : E_1 \rightarrow E_2$ is an isomorphism, then $\exists (d, D) \in \text{Aff}(\mathbb{R}^n) = \mathbb{R}^n \rtimes \text{GL}(n, \mathbb{R})$ s.t.

$$\forall \alpha \in E_1 : \varphi(\alpha) = (d, D)\alpha(d, D)^{-1}.$$

Generalization

Theorem (K.B. Lee '95)

Let $E_1 \subseteq \text{Isom}(\mathbb{R}^n)$ and $E_2 \subseteq \text{Isom}(\mathbb{R}^m)$ be crystallographic. If $\varphi : E_1 \rightarrow E_2$ is a morphism, then $\exists d \in \mathbb{R}^m$ and a linear map $D : \mathbb{R}^n \rightarrow \mathbb{R}^m$ s.t. $\forall \alpha \in E_1 : \varphi(\alpha) \circ (d, D) = (d, D) \circ \alpha$.

Here $(d, D) : \mathbb{R}^n \rightarrow \mathbb{R}^m : x \mapsto d + Dx.$
Second Bieberbach Theorem

Theorem (Second Bieberbach Theorem)

Let $E_1, E_2 \subseteq \text{Isom}(\mathbb{R}^n)$ be crystallographic. If $\varphi : E_1 \to E_2$ is an isomorphism, then $\exists (d, D) \in \text{Aff}(\mathbb{R}^n) = \mathbb{R}^n \rtimes \text{GL}(n, \mathbb{R})$ s.t.

$$\forall \alpha \in E_1 : \varphi(\alpha) = (d, D)\alpha(d, D)^{-1}.$$

Generalization

Theorem (K.B. Lee ’95)

Let $E_1 \subseteq \text{Isom}(\mathbb{R}^n)$ and $E_2 \subseteq \text{Isom}(\mathbb{R}^m)$ be crystallographic. If $\varphi : E_1 \to E_2$ is a morphism, then $\exists d \in \mathbb{R}^m$ and a linear map $D : \mathbb{R}^n \to \mathbb{R}^m$ s.t. $\forall \alpha \in E_1 : \varphi(\alpha) \circ (d, D) = (d, D) \circ \alpha$.

Here $(d, D) : \mathbb{R}^n \to \mathbb{R}^m : x \mapsto d + Dx.$
Replace \mathbb{R}^n by G, be a connected and simply connected nilpotent Lie group.

Replace $\text{Aff}(\mathbb{R}^n) = \mathbb{R}^n \rtimes \text{GL}(n, \mathbb{R})$ by $G \rtimes \text{Aut}(G)$.

Action of $G \rtimes \text{Aut}(G)$ on G: $(a, A) g = a \cdot A(g)$

Replace $O(n)$ by any (maximal) compact subgroup $C \subseteq \text{Aut}(G)$.

Hence $\text{Isom}(\mathbb{R}^n) = \mathbb{R}^n \rtimes O(n) \cong G \rtimes C$.
The Reidemeister number and Almost–crystallographic groups
Pairs of maps between almost–crystallographic groups
2 and 3–dimensional crystallographic groups

From flat manifolds to infra-nilmanifolds

Replace \mathbb{R}^n by G, be a connected and simply connected nilpotent Lie group.

Replace $\text{Aff}(\mathbb{R}^n) = \mathbb{R}^n \rtimes \text{GL}(n, \mathbb{R})$ by $G \rtimes \text{Aut}(G)$.

Action of $G \rtimes \text{Aut}(G)$ on G: $(a, A) g = a \cdot A(g)$

Replace $O(n)$ by any (maximal) compact subgroup $C \subseteq \text{Aut}(G)$.

Hence $\text{Isom}(\mathbb{R}^n) = \mathbb{R}^n \rtimes O(n) \twoheadrightarrow G \rtimes C$.
From flat manifolds to infra-nilmanifolds

Replace \mathbb{R}^n by G, be a connected and simply connected nilpotent Lie group.

Replace $\text{Aff}(\mathbb{R}^n) = \mathbb{R}^n \rtimes \text{GL}(n, \mathbb{R})$ by $G \rtimes \text{Aut}(G)$.

Action of $G \rtimes \text{Aut}(G)$ on G: $(a, A)g = a \cdot A(g)$

Replace $O(n)$ by any (maximal) compact subgroup $C \subseteq \text{Aut}(G)$.

Hence $\text{Isom}(\mathbb{R}^n) = \mathbb{R}^n \rtimes O(n) \cong G \rtimes C$.
Almost–Crystallographic groups

Definition

A uniform and discrete subgroup $E \subseteq G \rtimes C$ is an almost–crystallographic group (AC–group).

E torsionfree \leadsto almost–Bieberbach group \leadsto infra-nilmanifold $E \backslash G$.

If $E \subseteq G$ (E is a uniform lattice of G), then $E \backslash G$ is a nilmanifold.
First Generalized Bieberbach Theorem

Theorem (L. Auslander ’60)

\[E \text{ almost-crystallographic} \Rightarrow N = E \cap G \text{ is a uniform lattice of } G \text{ and } E/(E \cap G) = E/N \text{ is finite.} \]

Short exact sequence (again \(F = \text{holonomy group} \)):

\[1 \to N \to E \to F \to 1. \]

Remark: \(F \cong \{ A \in C \subseteq \text{Aut}(G) \mid \exists a \in G : (a, A) \in E \} \).

Let \(\mathfrak{g} \) be Lie algebra of \(G \):

\[\text{Aut}(G) \cong \text{Aut}(\mathfrak{g}) \hookrightarrow \text{Aut}(\mathfrak{g}) \subseteq GL(\mathbb{R}^n). \]

In this way we obtain the holonomy representation:

\[\rho : F \to \text{Aut}(\mathfrak{g}) \subseteq GL(\mathbb{R}^n) : A \mapsto A_. \]
The Reidemeister number and Almost–crystallographic groups
Pairs of maps between almost–crystallographic groups
2 and 3–dimensional crystallographic groups

First Generalized Bieberbach Theorem

Theorem (L. Auslander ’60)

\(E \text{ almost–crystallographic} \Rightarrow N = E \cap G \text{ is a uniform lattice of } G \text{ and } E/(E \cap G) = E/N \text{ is finite.} \)

Short exact sequence (again \(F = \text{holonomy group} \)):

\[1 \to N \to E \to F \to 1. \]

Remark: \(F \cong \{ A \in C \subseteq \text{Aut}(G) \mid \exists a \in G : (a, A) \in E \} \).

Let \(\mathfrak{g} \) be Lie algebra of \(G \):

\[\text{Aut}(G) \cong \text{Aut}(\mathfrak{g}) \leadsto \text{Aut}(\mathfrak{g}) \subseteq \text{GL}(\mathbb{R}^n). \]

In this way we obtain the holonomy representation:

\[\rho : F \to \text{Aut}(\mathfrak{g}) \subseteq \text{GL}(\mathbb{R}^n) : A \mapsto A_. \]
Theorem (K.B.Lee ’95)

Let $E_1 \subseteq G_1 \rtimes \text{Aut}(G_1)$ and $E_2 \subseteq G_2 \rtimes \text{Aut}(G_2)$ be AC–groups. If $\varphi : E_1 \rightarrow E_2$ is a morphism, then $\exists d \in G$ and a continuous morphism $D : G_1 \rightarrow G_2$ s.t. $\forall \alpha \in E_1 : \varphi(\alpha)(d, D) = (d, D)\alpha$.

Where $(d, D) : G_1 \rightarrow G_2 : x \mapsto d \cdot D(x)$.

Corollary

Any continuous map $f : E_1 \backslash G_1 \rightarrow E_2 \backslash G_2$ between two infra-nilmanifolds is homotopic to a map induced by an affine map $(d, D) : G_1 \rightarrow G_2$.
Theorem (K.B.Lee ’95)

Let $E_1 \subseteq G_1 \rtimes \text{Aut}(G_1)$ and $E_2 \subseteq G_2 \rtimes \text{Aut}(G_2)$ be AC–groups. If $\varphi : E_1 \to E_2$ is a morphism, then $\exists d \in G$ and a continuous morphism $D : G_1 \to G_2$ s.t. $\forall \alpha \in E_1 : \varphi(\alpha)(d, D) = (d, D)\alpha$.

Where $(d, D) : G_1 \to G_2 : x \mapsto d \cdot D(x)$.

Corollary

Any continuous map $f : E_1 \backslash G_1 \to E_2 \backslash G_2$ between two infra–nilmanifolds is homotopic to a map induced by an affine map $(d, D) : G_1 \to G_2$.
Corollary

Let \(f : E_1 \backslash G_1 \to E_2 \backslash G_2 \) be a continuous map between two infra-nilmanifolds and let \((d, D) : G_1 \to G_2\) be a homotopy lift of \(f \). Denote by

\[
\rho : F_1 \to \text{Aut}(\mathfrak{g}_1) \subseteq \text{GL}(\mathbb{R}^n) \quad \text{and} \\
\rho' : F_2 \to \text{Aut}(\mathfrak{g}_2) \subseteq \text{GL}(\mathbb{R}^m)
\]

the associated holonomy representations. Then there exists a map \(\phi : F_1 \to F_2 \) such that

\[
\rho'(\phi(A))D_* = D_*\rho(A) \quad \text{for all } A \in F_1
\]
1. The Reidemeister number and Almost-crystallographic groups
2. Pairs of maps between almost-crystallographic groups
3. 2 and 3-dimensional crystallographic groups

Karel Dekimpe: The R-infinity property for infra-nilmanifolds
Step 1: A technical lemma

Lemma

Suppose we have a commutative diagram

\[\begin{array}{ccccccccc}
1 & \rightarrow & H_1 & \rightarrow & G_1 & \rightarrow & F_1 & \rightarrow & 1 \\
\varphi' & \downarrow & \psi' & \rightarrow & \varphi & \downarrow & \psi & \rightarrow & 1 \\
1 & \rightarrow & H_2 & \rightarrow & G_2 & \rightarrow & F_2 & \rightarrow & 1 \\
\end{array} \]

where \(F_1 \) and \(F_2 \) are finite groups.

Then \(R(\varphi, \psi) < \infty \) if and only if \(R(\mu_\alpha \circ \varphi', \psi') < \infty, \forall \alpha \in G_2 \).

Here \(\mu_\alpha : H_2 \rightarrow H_2 : h \mapsto \alpha h \alpha^{-1} \).
Step 2: The Reidemeister number for morphisms of Lie groups

Let G_1, G_2 be simply connected, connected nilpotent Lie groups and $\mathfrak{g}_1, \mathfrak{g}_2$ be the associated Lie algebras.

Let $\Psi, \Phi : G_1 \to G_2$ be morphisms of Lie groups and $\Psi^*, \Phi^* : \mathfrak{g}_1 \to \mathfrak{g}_2$ be the associated Lie algebra morphisms.

Observation: If $\Psi^* - \Phi^* : \mathfrak{g}_1 \to \mathfrak{g}_2$ is surjective, then $\Psi \cdot \Phi^{-1} : G_1 \to G_2 : x \mapsto \Psi(x)\Phi(x)^{-1}$ is surjective.

In this case $R(\Phi, \Psi) = 1$.
Step 2: The Reidemeister number for morphisms of Lie groups

G_1, G_2 simply connected, connected nilpotent Lie groups
$\mathfrak{g}_1, \mathfrak{g}_2$ associated Lie algebras.

Let $\psi, \phi : G_1 \to G_2$ be morphisms of Lie groups and $\psi_* : \mathfrak{g}_1 \to \mathfrak{g}_2$ be the associated Lie algebra morphisms.

Observation: If $\psi_* - \phi_* : \mathfrak{g}_1 \to \mathfrak{g}_2$ is surjective, then $\psi \cdot \phi^{-1} : G_1 \to G_2 : x \mapsto \psi(x)\phi(x)^{-1}$ is surjective.

In this case $R(\phi, \psi) = 1$.
Conversely

Lemma

\[R(\Phi, \Psi) = \infty \]

\[\psi^* \circ \phi^* : g_1 \rightarrow g_2 \text{ is not surjective} \]
Let $\psi, \Phi : G_1 \to G_2$ be morphisms of Lie groups and $\psi_*, \Phi_* : \mathfrak{g}_1 \to \mathfrak{g}_2$ be the associated Lie algebra morphisms.

Let $\Lambda_1 \subseteq G_1$ (resp. $\Lambda_2 \subseteq G_2$) be a uniform lattice of G_1 (resp. G_2), with $\Phi(\Lambda_1) \subseteq \Lambda_2$ and $\Psi(\Lambda_1) \subseteq \Lambda_2$.

Lemma

Let $\varphi = \Phi|_{\Lambda_1}$ and $\psi = \Psi|_{\Lambda_1}$, then

$$R(\varphi, \psi) = \infty \iff \Psi_* - \Phi_* \text{ is not surjective}.$$
Step 3: The Reidemeister number for morphisms of lattices Lie groups

G_1, G_2 simply connected, connected nilpotent Lie groups \mathfrak{g}_1, \mathfrak{g}_2 associated Lie algebras.

Let $\psi, \Phi : G_1 \to G_2$ be morphisms of Lie groups and $\psi_*, \Phi_* : \mathfrak{g}_1 \to \mathfrak{g}_2$ be the associated Lie algebra morphisms.

Let $\Lambda_1 \subseteq G_1$ (resp. $\Lambda_2 \subseteq G_2$) be a uniform lattice of G_1 (resp. G_2), with $\Phi(\Lambda_1) \subseteq \Lambda_2$ and $\psi(\Lambda_1) \subseteq \Lambda_2$.

Lemma

Let $\varphi = \Phi|_{\Lambda_1}$ and $\psi = \psi|_{\Lambda_1}$, then

$$R(\varphi, \psi) = \infty \iff \psi_* - \Phi_* \text{ is not surjective.}$$
Step 4: The Reidemeister number for morphisms of almost–crystallographic groups

$E_1 \subseteq G_1 \rtimes \text{Aut}(G_1)$ and $E_2 \subseteq G_2 \rtimes \text{Aut}(G_2)$

$\varphi, \psi : E_1 \to E_2$ morphisms, induced by $(d_\varphi, D_\varphi), (d_\psi, D_\psi) : G_1 \to G_2$.

Theorem

$$R(\varphi, \psi) = \infty \iff \exists A \in F_2 : D_\psi^* - A^* D_\varphi^* \text{ is not surjective}$$
The Reidemeister number and Almost–crystallographic groups

Pairs of maps between almost–crystallographic groups

2 and 3–dimensional crystallographic groups
The Reidemeister number and Almost–crystallographic groups
Pairs of maps between almost–crystallographic groups
2 and 3–dimensional crystallographic groups

General picture

\[E \subseteq G \rtimes \text{Aut}(G), \, \varphi : G \to G, \text{ induced by } (d, D) : G \to G \]

Corollary

\[R(\varphi) = \infty \iff \exists A \in F : \det(I - A_\ast D_\ast) = 0. \]

Corollary

\[E \text{ (or } E \backslash G\text{) has the } R_\infty \text{ property if and only if } \forall \varphi : G \to G \text{ automorphism (induced by } (d, D)) \text{ there exists } A \in F \text{ with } \det(I - A_\ast D_\ast) = 0. \]
The Reidemeister number and Almost–crystallographic groups
Pairs of maps between almost–crystallographic groups
2 and 3–dimensional crystallographic groups

General picture

$E \subseteq G \rtimes \text{Aut}(G), \varphi : G \to G$, induced by $(d, D) : G \to G$

Corollary

$R(\varphi) = \infty \iff \exists A \in F : \det(\mathbb{I} - A_\ast D_\ast) = 0$.

Corollary

E (or $E \setminus G$) has the R_∞ property if and only if $\forall \varphi : G \to G$ automorphism (induced by (d, D)) there exists $A \in F$ with $\det(\mathbb{I} - A_\ast D_\ast) = 0$.

Karel Dekimpe

The R-infinity property for infra-nilmanifolds
Does a crystallographic group E have the R_∞ property?

- Choose $E \subset \text{Isom}(\mathbb{R}^n) \subseteq \text{Aff}(\mathbb{R}^n)$ crystallographic.
- Determine the group $F \subseteq \text{GL}(n, \mathbb{R})$. (Here $A = A_*$)
- Determine all possible $D \in \text{GL}(n, \mathbb{R})$ such that there is a $d \in \mathbb{R}^n$ with $(d, D) : \mathbb{R}^n \rightarrow \mathbb{R}^n$ inducing a morphism on E.
- I.e. for some map $\varphi : F \rightarrow F$:
 $$\rho(\varphi(A))D_* = D_*\rho(A) \rightsquigarrow \phi(A)D = DA.$$
- Check whether or not there is an $A \in F$ with $\det(I - AD) = 0$.

Karel Dekimpe
Theorem

In dimension 2 there are 3 crystallographic groups (out of 17) not having the R_{∞} property.

(This result was also obtained by D.L. Gonçalves and P. Wong)

Theorem

In dimension 3 there are 12 crystallographic groups (out of 219) not having the R_{∞} property.
Theorem

In dimension 2 there are 3 crystallographic groups (out of 17) not having the R_{∞} property.

(This result was also obtained by D.L. Gonçalves and P. Wong)

Theorem

In dimension 3 there are 12 crystallographic groups (out of 219) not having the R_{∞} property.
THANK YOU