(1) Fill in the blanks in the statement of the limit of a function below:
Suppose that \(a \in \mathbb{R} \), \(I \) is an open interval containing \(a \), and \(f \) is a real valued function defined at all points of \(I \) except possibly at \(a \).
Then \(f(x) \) is said to converge to \(L \) as \(x \) approaches \(a \) if and only if for every \(\epsilon > 0 \) there is a \(\delta > 0 \) such that
\[0 < |x - a| < \delta \implies |f(x) - L| < \epsilon. \]
In this case we write \(\lim_{x \to a} f(x) = L \).

(2) Using the definition above show that \(\lim_{x \to 2} (3x - 2) = 4 \).

Let \(\epsilon > 0 \) be given.
We want to show that there exists \(\delta > 0 \), such that
\[0 < |x - 2| < \delta \implies |(3x - 2) - 4| < \epsilon. \]
Note that \(|(3x - 2) - 4| = |3x - 6| = 3|x - 2| \).
If we let \(\delta = \epsilon/3 \), we have \(0 < |x - 2| < \delta \implies |(3x - 2) - 4| < 3(\epsilon/3) = \epsilon. \)
The result follows.