2.79 Let \(f \) be a bounded function on \([a, b]\). Prove that
\[
\int_a^b f(x) \, dx \leq \liminf_{n \to \infty} \int_a^b f_n(x) \, dx
\]

Hints: Use Exercise 2.78.
Let
\[
A = \left\{ \int_a^b h(x) \, dx : h \text{ a step function, } h \leq f \right\} \quad \text{and} \quad B = \left\{ \int_a^b h(x) \, dx : h \text{ a step function, } h \geq f \right\}.
\]
Then \(A, B \) are nonempty sets with \(\int_a^b f(x) \, dx = \sup A \) and \(\int_a^b f(x) \, dx = \inf B \). By Exercise 2.78 we have \(a \leq b \) for all \(a \in A \) and \(b \in B \). It remains to show that \(\sup A \leq \inf B \). Let \(b \in B \) be given; then \(b \) is an upper bound for \(A \) since \(a \leq b \) for all \(a \in A \). Hence, \(\sup A \leq b \). But since \(b \in B \) was arbitrary we have \(\sup A \leq b \) for all \(b \in B \). Thus, \(\sup A \) is a lower bound for \(B \) and therefore \(\sup A \leq \inf B \). □

2.83 Prove Proposition 2.21 on page 85: Let \(\{E_n\}_n \) be a sequence of subsets of \(\mathbb{R} \) each having measure zero. Then \(\bigcup_n E_n \) has measure zero.

Observe that a subset \(E \subset \mathbb{R} \) has measure zero iff for every \(\varepsilon > 0 \) there is a countable family of open intervals \(\{I_k\}_{k \in K} \) such that \(E \subset \bigcup_{k \in K} I_k \) and \(\sum_{k \in K} \ell(I_k) < \varepsilon \); usually \(K = \mathbb{N} \) but it may be any countable set. Now let \(\{E_m\}_m \) be a sequence of subsets of \(\mathbb{R} \) each having measure zero. For each \(m = 1, 2, \ldots \), since \(E_m \) has measure zero, there is a sequence of open intervals \(\{I_{m,n}\}_n \) such that \(E_m \subset \bigcup_n I_{m,n} \) and \(\sum_n \ell(I_{m,n}) < \frac{\varepsilon}{2^m} \). Hence we have a countable family of open intervals \(\{I_{m,n}\}_{m,n} \) (note that the indexing set is a countable union of countable sets and thus is itself countable) such that
\[
\bigcup_m E_m \subset \bigcup_m \bigcup_n I_{m,n} = \bigcup_{m,n} I_{m,n}
\]

and
\[
\sum_{m,n} \ell(I_{m,n}) = \sum_m \sum_n \ell(I_{m,n}) < \sum_m \frac{\varepsilon}{2^m} \leq \varepsilon.
\]
Hence, \(\bigcup_m E_m \) has measure zero. □

2.89 Construct a sequence of continuous functions on \([0, 1]\) that converges pointwise to a continuous function but for which the limit and the integral cannot be interchanged.

Let \(f \) be the constant function 0 and for each \(n \in \mathbb{N} \) define \(f_n : [0, 1] \to \mathbb{R} \) as follows:
\[
f_n(x) = \begin{cases}
 n^2 x, & 0 \leq x \leq \frac{1}{2n}; \\
 n - n^2 x, & \frac{1}{2n} < x \leq \frac{1}{n}; \\
 0, & \frac{1}{n} < x \leq 1.
\end{cases}
\]
Then \(f_n \) is continuous for each \(n \in \mathbb{N} \) and we have \(f_n \to f \) pointwise. We have \(\int_0^1 f_n(x) \, dx = \frac{1}{4} \) and \(\int_0^1 f(x) \, dx = 0 \). Hence,
\[
\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \frac{1}{4} \neq 0 = \int_0^1 \lim_{n \to \infty} f_n(x) \, dx.
\]
Hence, the limit and the integral operations cannot be interchanged.