3.15 Prove part (d) of Proposition 3.1: \(\lambda^*(x + A) = \lambda^*(A) \) for \(x \in \mathbb{R}, A \subseteq \mathbb{R} \), where \(x + A = \{x + y : y \in A\} \).

Let \(x \in \mathbb{R} \) be given and let \(A \) be a subset of \(\mathbb{R} \); recall that \(\lambda^*(A) = \inf S_A \) where

\[
S_A = \left\{ \sum_n \ell(I_n) : \{I_n\}_n \text{ open intervals, } \bigcup_n I_n \supseteq A \right\}.
\]

To show that \(\lambda^*(x + A) = \lambda^*(A) \), it suffices to show that \(S_{x+A} = S_A \). Suppose that \(y \in S_A \); then there is a sequence of open intervals \(\{I_n\}_n \) such that \(A \subseteq \bigcup_n I_n \) and \(y = \sum_n \ell(I_n) \). Now set \(J_n = x + I_n \); then, for each \(n \), \(J_n \) is an open interval with the same length as \(I_n \) and we have \(x + A \subseteq \bigcup_n J_n \). Hence, \(y = \sum_n \ell(J_n) \in S_{x+A} \) and so \(S_A \subseteq S_{x+A} \); but the same argument shows that \(S_{x+A} \subseteq S_{-x+(x+A)} = S_A \). Therefore, \(S_{x+A} = S_A \). □

3.16 Let \(A \) be a set with \(\lambda^*(A) < \infty \). Show that the function, \(g \), defined by \(g(x) = \lambda^*(A \cap (-\infty, x]) \) is uniformly continuous on \(\mathbb{R} \).

Note that for every real number \(x \), \(g(x) \) is nonnegative and

\[
g(x) = \lambda^*(A \cap (-\infty, x]) \leq \lambda^*(A) < \infty
\]

by monotonicity; hence \(g \) is a real valued function. We will first show that \(|g(x) - g(y)| \leq |y - x| \) for all \(x, y \in \mathbb{R} \). Since \(g \) is nondecreasing it suffices to show that \(g(x) - g(y) \leq x - y \) for all \(x, y \in \mathbb{R} \) with \(x > y \). Let \(x, y \in \mathbb{R} \) be given with \(x > y \) and let \(\varepsilon > 0 \). By definition of \(g(y) \) there is a sequence of open intervals \(\{I_n\}_n \) such that \(A \cap (-\infty, y] \subseteq \bigcup_n I_n \) and \(\sum_n \ell(I_n) < g(y) + \frac{\varepsilon}{3} \). Set \(I_0 = (y - \frac{\varepsilon}{3}, x + \frac{\varepsilon}{3}) \); then we have \((-\infty, x] \subseteq I_0 \cup (-\infty, y] \) and thus

\[
A \cap (-\infty, x] \subseteq I_0 \cup (A \cap (-\infty, y]) \subseteq I_0 \cup (\bigcup_n I_n).
\]

Hence,

\[
g(x) = \lambda^*(A \cap (-\infty, x]) \leq \ell(I_0) + \sum_n \ell(I_n) < y - x + \frac{2\varepsilon}{3} + g(y) + \frac{\varepsilon}{3} = y - x + g(y) + \varepsilon.
\]

So we have \(g(x) - g(y) < x - y + \varepsilon \) for all \(\varepsilon > 0 \); hence, \(g(x) - g(y) \leq x - y \). Therefore, we have \(|g(x) - g(y)| \leq |x - y| \) for all \(x, y \in \mathbb{R} \). It remains to show that \(g \) is uniformly continuous. Let \(\varepsilon > 0 \) and \(x \in \mathbb{R} \) be given. Then take \(\delta = \varepsilon \); if \(|y - x| < \varepsilon \), we have \(|g(x) - g(y)| \leq |x - y| < \varepsilon \) as required. Thus \(g \) is uniformly continuous. □

3.18 Let \(E \subseteq \mathbb{R} \). Show that there is a sequence of open sets, \(\{O_n\}_{n=1}^\infty \), such that \(O_1 \supseteq O_2 \supseteq \cdots \supseteq E \) and

\[
\lambda^*(E) = \lambda^*\left(\bigcap_{n=1}^\infty O_n\right) = \lim_{n \to \infty} \lambda^*(O_n).
\]

If \(\lambda^*(E) = \infty \) we may take \(O_n = \mathbb{R} \) for all \(n \in \mathbb{N} \) and the result holds; hence, we may suppose that \(\lambda^*(E) < \infty \).

Claim: For every \(\varepsilon > 0 \), there is an open set \(O \supset E \) such that \(\lambda^*(O) < \lambda^*(E) + \varepsilon \).

Let \(\varepsilon > 0 \) be given. Then by definition of \(\lambda^*(E) \) as infimum of \(S_E \), \(\lambda^*(E) + \varepsilon \) is not a lower bound of \(S_E \). Hence, there is a sequence of open intervals \(\{I_n\}_n \) such that \(E \subseteq \bigcup_n I_n \) and \(\sum_n \ell(I_n) < \lambda^*(E) + \varepsilon \). Set \(O = \bigcup_n I_n \); then since \(O \subseteq \bigcup_n I_n \), we have \(\sum_n \ell(I_n) \subseteq S_O \). Thus,

\[
\lambda^*(O) \leq \sum_n \ell(I_n) < \lambda^*(E) + \varepsilon.
\]

The claim now follows.

By the claim (and the Axiom of Choice) there is a sequence of open sets \(\{U_n\}_{n=1}^\infty \) such that for each \(n \in \mathbb{N} \) we have \(U_n \supset E \) and \(\lambda^*(U_n) < \lambda^*(E) + \frac{1}{n} \). Now for each \(n \in \mathbb{N} \) set \(O_n = \bigcap_{k=1}^n U_k \). Then for each \(n \in \mathbb{N} \) we have \(O_n \) is an open set, \(O_n \supset O_{n+1} \) and \(E \subseteq O_n \subseteq U_n \); so, for each \(m \in \mathbb{N} \) we have by monotonicity

\[
\lambda^*(E) \leq \lambda^*\left(\bigcap_{n=1}^\infty O_n\right) \leq \lambda^*(O_m) \leq \lambda^*(U_m) < \lambda^*(E) + \frac{1}{m}.
\]

Hence taking the limit as \(m \to \infty \) we get

\[
\lambda^*(E) = \lambda^*\left(\bigcap_{n=1}^\infty O_n\right) = \lim_{n \to \infty} \lambda^*(O_n).
\]

The result follows. □
Verify parts (a) and (b) in Lemma 3.10 on page 113:

Let O be a proper open subset of \mathbb{R} (i.e., O is open, nonempty and not equal to \mathbb{R}). For each $n \in \mathbb{N}$, let

$$O_n = \left\{ x : d(x, O^c) > \frac{1}{n} \right\}.$$

Then,

a) O_n is open and $O_n \subset O$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$; then since $d(x, O^c) = 0$ for all $x \in O^c$ we have $O_n \subset O$. As was proved in class the function $g : \mathbb{R} \to \mathbb{R}$ given by $g(x) = d(x, O^c)$ is continuous. Therefore by Theorem 2.5 we have

$$O_n = \left\{ x : d(x, O^c) > \frac{1}{n} \right\} = g^{-1}\left(\frac{1}{n}, \infty \right)$$

is open (since $(\frac{1}{n}, \infty)$ is open).

b) $O_1 \subset O_2 \subset \cdots$ and $\bigcup_n O_n = O$.

Let g be as in part (a). Let $n \in \mathbb{N}$ be given; since $\frac{1}{n+1} < \frac{1}{n}$, we have $(\frac{1}{n}, \infty) \subset (\frac{1}{n+1}, \infty)$ and therefore

$$O_n = g^{-1}\left(\frac{1}{n}, \infty \right) \subset g^{-1}\left(\frac{1}{n+1}, \infty \right) = O_{n+1}.$$

Since O^c is closed we have $x \in O^c$ iff $g(x) = 0$, and so $x \in O$ iff $g(x) > 0$. Let $x \in O$ be given; then since $g(x) > 0$ there is $n \in \mathbb{N}$ such that $g(x) > \frac{1}{n}$. Hence, $x \in O_n$ and so $O \subset \bigcup_n O_n$. The reverse inclusion follows by part (a).

3.25 Suppose that O is open. Prove that

$$\lambda^*(W) = \lambda^*(W \cap O) + \lambda^*(W \cap O^c)$$

for all subsets W of \mathbb{R}.

Let $W \subset \mathbb{R}$ be given and set $A = W \cap O$ and $B = W \cap O^c$. Then since $A \subset O$ and $B \subset O^c$ we have,

$$W = (W \cap O) \cup (W \cap O^c) = A \cup B$$

and

$$\lambda^*(W) = \lambda^*(A \cup B) = \lambda^*(A) + \lambda^*(B) = \lambda^*(W \cap O) + \lambda^*(W \cap O^c)$$

by Theorem 3.9.