2.3 For \(x, y \in \mathbb{R} \), we define the **maximum** of \(x \) and \(y \) to be the larger of those two numbers. We denote the maximum by \(\max\{x, y\} \) or \(x \vee y \). Thus,

\[
\max\{x, y\} = x \vee y = \begin{cases}
 x, & \text{if } x \geq y; \\
 y, & \text{if } x < y.
\end{cases}
\]

Similarly, we define the **minimum** of \(x \) and \(y \) to be the smaller of those two numbers. We denote the minimum by \(\min\{x, y\} \) or \(x \wedge y \). Thus,

\[
\min\{x, y\} = x \wedge y = \begin{cases}
 y, & \text{if } x \geq y; \\
 x, & \text{if } x < y.
\end{cases}
\]

Let \(x, y \in \mathbb{R} \). Referring to Exercise 2.2, prove each of the following facts.

a. \(|x| = x \vee -x \)

There are two cases to consider: either \(x \geq 0 \) or \(x < 0 \). If \(x \geq 0 \), then \(x \geq -x \) and so \(x \vee -x = x = |x| \). If \(x < 0 \), then \(-x \geq x \) and so \(x \vee -x = -x = |x| \). Hence, \(|x| = x \vee -x \) for all \(x \in \mathbb{R} \).

b. \(x \vee y = \frac{1}{2}(x + y + |x - y|) \)

There are two cases to consider: either \(x \geq y \) or \(x < y \). If \(x \geq y \) then \(|x - y| = x - y \) and hence

\[
\frac{1}{2}(x + y + |x - y|) = \frac{1}{2}(x + y + (x - y)) = x = x \vee y.
\]

If \(x < y \) then \(|x - y| = y - x \) and hence

\[
\frac{1}{2}(x + y + |x - y|) = \frac{1}{2}(x + y + (y - x)) = y = x \vee y.
\]

The result follows.

c. \(x \wedge y = \frac{1}{2}(x + y - |x - y|) \)

Clearly \(x \wedge y + x \vee y = x + y \). Hence, by part (b) we have

\[
x \wedge y = x + y - x \vee y = x + y - \frac{1}{2}(x + y + |x - y|) = \frac{1}{2}(x + y - |x - y|)
\]

as required.

2.4 Suppose that \(A \) is bounded below. Prove that \(A \) has a greatest lower bound and that, in fact,

\[
\inf A = -\sup\{-x : x \in A\}.
\]

Suppose that \(A \) is a nonempty set of real numbers which is bounded below, then \(\sup\{-x : x \in A\} \) is bounded above and therefore has a least upper bound by the Completeness Axiom. Set \(l = -\sup\{-x : x \in A\} \). To show that \(l = \inf A \) we must show that \(l \) is a lower bound for \(A \) and that if \(l' > l \) then \(l' \) is not a lower bound for \(A \), that is, there is an element \(x \in A \) such that \(x < l' \). Let \(x \in A \), then since \(-l = \sup\{-x : x \in A\} \), we have \(-x \leq -l \) and thus \(l \leq x \); hence, \(l \) is a lower bound for \(A \). Let \(l' \) be given so that \(l' > l \). Then since \(-l' < -l = \sup\{-x : x \in A\} \), \(-l' \) is not an upper bound for \(\{-x : x \in A\} \). Hence, there is \(x \in A \) so that \(-l' < -x \). Therefore, \(x < l' \) and \(l' \) is not a lower bound for \(A \). Hence \(l = \inf A \).

2.8 Prove that any (nondegenerate) interval of real numbers contains infinitely many rational numbers.

Let \(I \) be a nondegenerate interval of real numbers; then there are two real numbers \(a, b \in I \) with \(a < b \) such that \((a, b) \subseteq I\). By Proposition 2.4 there is a rational number \(r_0 \in (a, b) \) and a second rational number \(r_1 \in (r_0, b) \). We construct a decreasing sequence in \(I \) recursively starting with \(r_1 \) by setting \(r_{n+1} = (r_n + r_0)/2 \). We have \(r_n \in (r_0, b) \subseteq I \) for all \(n \in \mathbb{N} \) and the sequence is decreasing so the terms are distinct. Therefore there are infinitely many rational numbers in \(I \). Note that we have used the fact that if \(c, d \in \mathbb{Q} \) then \((c + d)/2 \in \mathbb{Q} \) and \(c < (c + d)/2 < d \).

2.16a Prove Proposition 2.6 on page 45.

Any monotone sequence of real numbers converges in \(\mathbb{R}^* \). In fact, we have the following: If \(\{x_n\}_{n=1}^\infty \) is nondecreasing, then

\[
\lim_{n \to \infty} x_n = \sup\{x_n : n \in \mathbb{N}\}.
\]

In particular, the limit exists and is finite if \(\{x_n\}_{n=1}^\infty \) is bounded above and is \(\infty \) otherwise.

Let \(\{x_n\}_{n=1}^\infty \) be a nondecreasing sequence of real numbers. First suppose the sequence is bounded above. Then by the completeness axiom \(x = \sup\{x_n : n \in \mathbb{N}\} \) exists and is finite. We now show that \(x = \lim_{n \to \infty} x_n \). Given \(\varepsilon > 0 \), since \(x - \varepsilon \) is not an upper bound for the set \(\{x_n : n \in \mathbb{N}\} \) (\(x \) is the least upper bound) there is \(N \in \mathbb{N} \) such that \(x - \varepsilon < x_N \leq x \). Since \(\{x_n\}_{n=1}^\infty \) is nondecreasing we have \(x - \varepsilon < x_N \leq x_n \leq x \) for all \(n \geq N \). It follows that \(|x - x_n| < \varepsilon \) for all \(n \geq N \). Hence, \(x = \lim_{n \to \infty} x_n \); moreover, the limit exists and is finite. Suppose that \(\{x_n : n \in \mathbb{N}\} \) is not bounded above, then \(\sup\{x_n : n \in \mathbb{N}\} = \infty \). We now show that \(\lim_{n \to \infty} x_n = \infty \). Let \(M \in \mathbb{R} \) be given; then since \(\{x_n : n \in \mathbb{N}\} \) is not bounded above, \(M \) is not an upper bound and therefore there is \(N \in \mathbb{N} \) such that \(x_N > M \).
Since \(\{x_n\}_{n=1}^\infty \) is nondecreasing we have \(x_n \geq x_N > M \) for all \(n \geq N \). Hence, \(\lim_{n \to \infty} x_n = \infty \). In either case, \(\lim_{n \to \infty} x_n = \sup\{x_n : n \in \mathbb{N}\} \).

2.28a Let \(\{x_n\}_{n=1}^\infty \) and \(\{y_n\}_{n=1}^\infty \) and assume that \(\lim_{n \to \infty} y_n \) exists and is finite. Prove that

\[
\limsup(x_n + y_n) = \limsup x_n + \lim y_n.
\]

Let \(x = \limsup x_n \) and \(y = \lim y_n \). We first assume that \(x \) is a real number and use Proposition 2.8(a) to verify that \(\limsup(x_n + y_n) = x + y \). Let \(\varepsilon > 0 \) be given. Since \(x = \limsup x_n \) there is an \(N_1 \in \mathbb{N} \) such that \(x_n \leq x + \varepsilon/2 \) for all \(n \geq N_1 \). Since \(y_n \to y \), there is \(N_2 \in \mathbb{N} \) such that \(y - y/2 < y_n < y + \varepsilon/2 \) for all \(n \geq N_2 \). Then for all \(n \geq N = \max\{N_1, N_2\} \) both conditions hold and we have \(x + y_n \leq x + y + \varepsilon \). Now, let \(n \in \mathbb{N} \) be given, then since \(x = \limsup x_n \) there is \(m \geq \max(n, N_2) \) such that \(x_m > x - \varepsilon/2 \) and since \(m \geq N_2 \), \(y_m > y - \varepsilon/2 \). Hence, \(x_m + y_m > x + y - \varepsilon \) for some \(m \geq n \). Hence, \(\limsup(x_n + y_n) = x + y \).

Now suppose that \(\limsup x_n = \infty \), then we use Proposition 2.8(b) to show that

\[
\limsup(x_n + y_n) = \limsup x_n + \lim y_n = \infty + \infty = \infty.
\]

Since \(y_n \to y \) there is a \(K \in \mathbb{N} \) such that \(y_n > y - 1 \) for all \(n \geq K \). Now let \(M \in \mathbb{R} \) and \(N \in \mathbb{N} \) be given. Since \(\limsup x_n = \infty \), there is \(n \geq \max\{N, K\} \) such that \(x_n > M - y + 1 \). Since \(n \geq K \) we have \(y_n > y - 1 \). Hence, \(x_n + y_n > M - y + 1 + y - 1 = M \).

Hence, \(\limsup(x_n + y_n) = \infty \) as required.

Note that by Proposition 2.8(c) we have \(\limsup x_n = -\infty \) iff \(\lim_{n \to \infty} x_n = -\infty \). Now suppose that \(\lim sup x_n = -\infty \) or equivalently that \(\lim_{n \to \infty} x_n = -\infty \). Then to show that

\[
\limsup(x_n + y_n) = \limsup x_n + \lim y_n = -\infty + y = -\infty.
\]

it suffices by Proposition 2.8(c) to show that \(\lim_{n \to \infty} x_n + y_n = -\infty \). Now let \(M \in \mathbb{R} \). Since \(y_n \to y \) there is a \(N_1 \in \mathbb{N} \) such that \(y_n < y + 1 \) for all \(n \geq N_1 \). Since \(x_n \to -\infty \), there is a \(N_2 \in \mathbb{N} \) such that \(x_n < M - y - 1 \) for all \(n \geq N_1 \). Then for all \(n \geq N = \max\{N_1, N_2\} \) we have

\[
x_n + y_n < M - y - 1 + y + 1 = M.
\]

Hence, \(\lim_{n \to \infty} x_n + y_n = -\infty \).

2.36 In this exercise, we will discuss infinite series. Let \(\{x_n\}_{n=1}^\infty \) be a sequence of real numbers. The sequence \(\{s_n\}_{n=1}^\infty \) defined by \(s_n = \sum_{k=1}^n x_k , n \in \mathbb{N} \), is called the sequence of partial sums of \(\{x_n\}_{n=1}^\infty \). If the sequence \(\{s_n\}_{n=1}^\infty \) converges to a real number, say, \(s \), then we say that \(\{x_n\}_{n=1}^\infty \) is summable to \(s \) or that the infinite series \(\sum_{n=1}^\infty x_n \) converges to \(s \), and we write \(s = \sum_{n=1}^\infty x_n \). We also say that \(s \) is the sum of the infinite series. If the sequence \(\{s_n\}_{n=1}^\infty \) does not converge to a real number, then we say that \(\{x_n\}_{n=1}^\infty \) is not summable or that the infinite series \(\sum_{n=1}^\infty x_n \) diverges. For brevity we often write \(\sum x_n \) in place of \(\sum_{n=1}^\infty x_n \).

a) Prove that if \(x_n \geq 0 \) for each \(n \in \mathbb{N} \), then either \(\lim_{n \to \infty} s_n = \infty \) or \(\sum x_n \) converges.

Suppose \(x_n \geq 0 \) for each \(n \in \mathbb{N} \). Then the sequence \(\{s_n\}_{n=1}^\infty \) given by \(s_n = \sum_{k=1}^n x_k \) is a nondecreasing sequence. Hence, by Proposition 2.6 either the sequence converges to \(\infty \) if \(\{s_n\}_{n=1}^\infty \) is not bounded above or it is bounded above and thus has a finite limit, in which case \(\sum x_n \) converges.

b) Show that if \(\sum x_n \) converges, then \(\lim_{n \to \infty} x_n = 0 \)

Suppose \(\sum x_n \) converges. Then the sequences \(\{s_n\}_{n=1}^\infty \) and \(\{s_{n+1}\}_{n=1}^\infty \) share the same finite limit \(s \), hence,

\[
\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} s_{n+1} - s_n = \lim_{n \to \infty} s_{n+1} - \lim_{n \to \infty} s_n = s - s = 0.
\]

It follows that \(\lim_{n \to \infty} x_n = 0 \).

c) Show that if \(\sum x_n \) converges, then \(\lim_{n \to \infty} \sum_{k=n}^\infty x_k = 0 \).

Suppose that \(\sum_{n=1}^\infty x_n \) converges, say, \(s = \sum_{n=1}^\infty x_n \). Then \(\sum_{k=n}^\infty x_k \) also converges and if \(n \geq 2 \) we have \(s = \sum_{k=n}^\infty x_k = s - s_{n-1} \). Hence, \(\lim_{n \to \infty} \sum_{k=n}^\infty x_k = \lim_{n \to \infty} s - s_{n-1} = 0 \).

d) Prove that if \(\sum |x_n| \) converges, then so does \(\sum x_n \). Hint: Use the Cauchy criterion.

Suppose that \(\sum |x_n| \) converges, then the sequence of partial sums \(\{t_n\}_{n=1}^\infty \) given by \(t_n = \sum_{k=1}^n |x_k| \) converges and therefore is a Cauchy sequence (by the Cauchy Criterion: Theorem 2.1). To show that \(\sum x_n \) converges it suffices to show that its sequence of partial sums \(\{s_n\}_{n=1}^\infty \) given by \(s_n = \sum_{k=1}^n x_k \) is a Cauchy sequence. Let \(\varepsilon > 0 \) be given. Then since \(\{t_n\}_{n=1}^\infty \) is Cauchy, there is \(N \in \mathbb{N} \) such that \(|t_m - t_n| < \varepsilon \) for all \(m, n \geq N \). Now let \(m, n \geq N \), we show that \(|s_m - s_n| < \varepsilon \). If \(m = n \) there is nothing to prove; by switching \(m \) and \(n \) if necessary we may assume that \(n < m \). By the triangle inequality we have

\[
|s_m - s_n| = \sum_{k=1}^n |x_k| - \sum_{j=1}^{n-1} |x_j| = \sum_{k=n+1}^m |x_k| \leq \sum_{k=n+1}^m |t_k - t_{k-1}| < \varepsilon.
\]

Hence, \(\{s_n\}_{n=1}^\infty \) is Cauchy and the series converges.