Math 713 - Review Sheet for the final exam
Tuesday, 5 December 2006

The Final Exam is on Monday, 18 Dec, noon-2. It will cover up through §4.3. Study the review sheet given for Test 2 in addition to this one. You will have to choose approximately 80% of the questions on the exam and solve them correctly for full points.

(1) Show that a nonempty set A is countable iff there is a surjective function $f : \mathbb{N} \to A$.
(2) Let Ω be a nonempty countable set and suppose that \mathcal{A} is a σ-algebra of subsets of Ω such that for any pair of distinct elements $x, y \in \Omega$ there is an $A \in \mathcal{A}$ such that $x \in A$ but $y \notin A$. Show that $\mathcal{A} = \mathcal{P}(\Omega)$.
(3) Give an example (if possible) of a σ-algebra which is not an algebra.
(4) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3$. Use the definition of continuity to prove that f is continuous.
(5) Let $f : X \to Y$ be a function and suppose that A and B are subsets of Y. Show that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$, and $f^{-1}(A^c) = f^{-1}(A)^c$.
(6) Suppose that $\{x_n\}_{n=1}^{\infty}$ is a sequence of real numbers which converges to x_0 and that $f : \mathbb{R} \to \mathbb{R}$ is continuous at x_0. Show that $f(x_n) \to f(x_0)$ as $n \to \infty$.
(7) Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers show that $\limsup x_n = \infty$ iff $\sup_n x_n = \infty$ and that $\liminf x_n = \infty$ iff $\lim_{n \to \infty} x_n = \infty$.
(8) Let f and g be real valued continuous functions defined on \mathbb{R} show that $f \vee g$ is continuous.
(9) Suppose that $f : X \to Y$ is a function and \mathcal{A} is a σ-algebra of sets on Y. Show that the following collection of subsets of X is also a σ-algebra

$$\{f^{-1}(A) : A \in \mathcal{A}\}.$$
(10) Suppose that $f : A \to B$ is one-to-one. Show that A is countable if B is. Does the converse hold?
(11) Suppose that $f : A \to B$ is a surjective function. Show that there is a function $g : B \to A$ such that $f(g(b)) = b$ for all $b \in B$. Must g be one-to-one?
(12) Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be two sequences of real numbers. Show that $\lim sup(x_n + y_n) \leq \lim sup x_n + \lim sup y_n$ if the right hand side makes sense.
(13) Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be two sequences of real numbers and suppose that $x_n \leq y_n$ for all $n \in \mathbb{N}$. Show that $\lim inf x_n \leq \lim inf y_n$.
(14) Show that every bounded sequence of real numbers has a convergent subsequence.
(15) Define a closed set. Prove that a finite union of closed sets is closed.
(16) State the Monotone Convergence Theorem and prove two interesting corollaries.
(17) Let $E = [0, 1]$ and define the functions f and f_n for each $n \in \mathbb{N}$ by

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{for } 0 \leq x < 1 \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad f_n(x) = \begin{cases} 1 + x + \cdots + x^n & \text{for } 0 \leq x < 1 \\ 0 & \text{otherwise} \end{cases}.$$
Show that

$$\int_E f \, d\lambda = \lim_{n \to \infty} \int_E f_n \, d\lambda.$$
(18) State and prove Fatou's Lemma for a sequence of nonnegative real-valued \mathcal{M}-measurable functions defined on \mathbb{R}.
(19) State the Dominated Convergence Theorem.
(20) Let $f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \sum_{n=1}^{\infty} 2^{-n} \cos nx.$$
Show that f is well-defined by verifying that the series converges for all $x \in \mathbb{R}$. Show that f is a Borel measurable function and that f is integrable on $E = [0, \pi]$. Evaluate $\int_E f \, d\lambda$.
(21) Suppose that the function $f : \mathbb{R} \to \mathbb{R}$ is continuous and nonnegative. Show that f is \mathcal{M}-measurable and that $\int_a^b f(x) \, dx = \int_a^b f \, d\lambda$ where $E = [a, b]$.
(22) Definition 4.1 on page 168, Theorem 4.1 on page 170; Definition 4.4, Propositions 4.1 and 4.2 on pages 175-6.
(23) Let (Ω, \mathcal{A}) be a measurable space. Define what it means for a function $f : \Omega \to \mathbb{R}$ to be simple. Show that the collection of all simple functions forms an algebra.
(24) Let (Ω, \mathcal{A}) be a measurable space and let f be a real-valued function defined on Ω. Show that f is \mathcal{A}-measurable iff $f^{-1}(B) \in \mathcal{A}$ for each Borel set B.
(25) Carefully state the Monotone Convergence Theorem for extended real valued functions on a measure space and prove two interesting corollaries.
(26) Let (Ω, \mathcal{A}) be a measurable space. Suppose that f and g are extended real-valued \mathcal{A}-measurable functions defined on Ω. Prove that $\{x : f(x) = g(x)\} \in \mathcal{A}$ is \mathcal{A}-measurable.
(27) Let (Ω, \mathcal{A}) be a measurable space and let $\{f_n\}_{n=1}^{\infty}$ be a sequence of real-valued \mathcal{A}-measurable functions. Show that $E = \{x \in \Omega : \lim_{n \to \infty} f_n(x) \text{ exists} \} \in \mathcal{A}$; further, show that the function $f : \Omega \to \mathbb{R}$ given below is \mathcal{A}-measurable

$$f(x) = \begin{cases} \lim_{n \to \infty} f_n(x) & \text{if } x \in E, \\ 0 & \text{else.} \end{cases}$$
(28) Consider the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ where μ is the counting measure and let $f : \mathbb{N} \to \mathbb{R}$ be a function. Show that f is $\mathcal{P}(\mathbb{N})$-measurable. Suppose that f is nonnegative and use the definition to show that $\int f \, d\mu = \sum_{n=1}^{\infty} f(n)$.
Let \(\{f_n\}_{n=1}^\infty \) and \(\{g_n\}_{n=1}^\infty \) are two sequences of real-valued \(\mathcal{M} \)-measurable functions on \(\mathbb{R} \) such that \(f_n = g_n \) \(\lambda \)-ae for every \(n \in \mathbb{N} \). Show that \(\{f_n\}_{n=1}^\infty \) converges \(\lambda \)-ae iff \(\{g_n\}_{n=1}^\infty \) converges \(\lambda \)-ae. In this case what can one say about their respective limits?

Exercise 3.102.

Find if possible an example of a real-valued \(\mathcal{M} \)-measurable function \(f \) which is not Lebesgue integrable on \([0, \infty)\) such that the improper Riemann integral \(\int_0^\infty f(x) \, dx \) converges. Does your answer change if \(f \) is required to be nonnegative?

Show that the function \(f : \mathbb{R} \to \mathbb{R} \) given by \(f(x) = e^{-x} \sin(x^2) \) is integrable on \([0, \infty)\).

Let \(f : \mathbb{R} \to \mathbb{R} \) be the function given by
\[
 f(x) = \begin{cases}
 x^{-1/3} & \text{if } x \neq 0 \\
 0 & \text{else}
 \end{cases}.
\]

Show that \(f \) is integrable on \(E_a = [-a, a] \) for all \(a > 0 \). Is \(f \) integrable on \(\mathbb{R} \)?

Let \(E_t = [0, t] \) for \(0 < t < 1 \) and define the functions \(f \) and \(f_n \) for \(n \in \mathbb{N} \) by
\[
 f(x) = \begin{cases}
 \frac{1}{1+x} & \text{for } 0 \leq x < 1 \\
 0 & \text{otherwise}
 \end{cases}
\]
\[
 f_n(x) = \begin{cases}
 \sum_{k=0}^{\infty} (-1)^k x^k & \text{for } 0 \leq x < 1 \\
 0 & \text{otherwise}
 \end{cases}
\]

Show that
\[
 \int_{E_t} f \, d\lambda = \lim_{n \to \infty} \int_{E_t} f_n \, d\lambda.
\]