This handout discusses the Envelope Theorem and its application to the profit function.

Part A: Envelope Theorem (Unconstrained Case)

Consider the following vectors of \(x = (x_1, x_2, \ldots, x_n) \) and \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_m) \). Let \(F(x, \alpha) \) be a continuous and differentiable function. We recognize that function \(F \) will have a different optimizing solution of \(x \) for each \(\alpha \). In other words, there will be an envelope of optimizing solution of \(x \) determined for each \(\alpha \), i.e., \(x = x^*(\alpha) \).

Applying the first-order condition (FOC) to \(F(x, \alpha) \), we get:

\[
\frac{\partial F(x, \alpha)}{\partial x_i} = 0 \quad \forall i = 1, \ldots, n. \tag{1}
\]

The optimum solution of \(x \), i.e., \(x = x(\alpha) = [x_1(\alpha), x_2(\alpha), \ldots, x_n(\alpha)] \) is obtained by solving Equation (1), provided that the sufficient second-order condition for optimization is satisfied.

Let \(V(\alpha) \) be the value function defined as:

\[
V(\alpha) = F(x(\alpha), \alpha) \tag{2}
\]

The Envelope Theorem states that:

\[
\frac{\partial V(\alpha)}{\partial \alpha_j} = \frac{\partial F(x, \alpha)}{\partial \alpha_j} \bigg|_{x = x(\alpha)} ; \forall j = 1, \ldots, m. \tag{3}
\]

The Envelope Theorem is a short-cut to derive optimizing solution of \(x \) determined by \(\alpha \).

Part B: Example

Consider \(F(x, \alpha) = \ln(x) - \alpha x \). The first and second order conditions are:

FOC: \(\frac{\partial F}{\partial x} = \frac{1}{x} - \alpha = 0; \)

or \(x^* = \frac{1}{\alpha} \).
SOC: \[
\frac{\partial}{\partial x} \left(\frac{\partial F}{\partial x} \right) = \frac{\partial^2 F}{\partial x^2} = -\frac{1}{x^2} < 0.
\]

So the solution of \(x^* = \frac{1}{\alpha} \) is a maximum.

The value function is:

\[
V(\alpha) = \ln \left(\frac{1}{\alpha} \right) - \alpha \left(\frac{1}{\alpha} \right) = -\ln(\alpha) - 1.
\]

(4)

Taking the derivative of the value function in Equation (4) with respect to \(\alpha \) yields:

\[
\frac{dV(\alpha)}{d\alpha} = -\frac{1}{\alpha}.
\]

(5)

Applying the Envelope Theorem to \(F(x,\alpha) = \ln(x) - \alpha x \) yields:

\[
\frac{\partial F}{\partial \alpha} \bigg|_{x=\frac{1}{\alpha}} = -x \bigg|_{x=\frac{1}{\alpha}} = -\frac{1}{\alpha}.
\]

(6)

The use of the Envelope Theorem allows us to skip the extra step of deriving the value function.

PART C: Application of the Envelope Theorem to Profit Maximization

Consider a strictly concave production function for a two-input case, \(y = f(x_1, x_2) \). The objective is to maximize:

\[
\pi = pf(x_1, x_2) - w_1 x_1 - w_2 x_2
\]

(7)

As discussed in class, applying the FOC to Equation (7) yields:

\[
 pf_1 = w_1
\]

(8)

\[
 pf_2 = w_2
\]

(9)

The sufficient SOC condition for profit-maximization is achieved by the requirement that the profit function is strictly concave. The input demand functions, \(x_1 = x_1(w_1, w_2, \pi) \)
and $x_2 = x_2(w_1, w_2, p)$, can be derived by solving Equations (8) and (9). Substituting the factor demand function in Equation (7) yields:

$$\pi = pf[x_1(w_1, w_2, p), x_2(w_1, w_2, p)] - w_1x_1(w_1, w_2, p) - w_2x_2(w_1, w_2, p)$$ \hspace{1cm} (10)

We recognize that the profit function in Equation (10) changes as a result of a change in input and commodity prices. Applying the Envelope Theorem to Equation (10) yields:

$$\frac{\partial \pi}{\partial w_1} = -x_1(w_1, w_2, p)$$ \hspace{1cm} (11)

$$\frac{\partial \pi}{\partial w_2} = -x_2(w_1, w_2, p)$$ \hspace{1cm} (12)

$$\frac{\partial \pi}{\partial p} = y(w_1, w_2, p)$$ \hspace{1cm} (13)

The results in Equations (11)-(13) are the presentation of the duality theorem applied to the profit function. The results in Equations (11)-(13) can be proven by differentiating the profit function in Equation (10) with respect to w_1, w_2 or p and apply the results from FOC in Equations (8) and (9).

Let’s differentiate the profit function in Equation (10) with respect to w_1. We get:

$$\frac{\partial \pi}{\partial w_1} = pf_1 \frac{\partial x_1}{\partial w_1} + pf_2 \frac{\partial x_2}{\partial w_1} - x_1 - w_1 \frac{\partial x_1}{\partial w_1} - w_2 \frac{\partial x_2}{\partial w_1}$$ \hspace{1cm} (14)

Rearranging the terms in the right-hand-side of Equation (14), we get:

$$\frac{\partial \pi}{\partial w_1} = (pf_1 - w_1) \frac{\partial x_1}{\partial w_1} + (pf_2 - w_2) \frac{\partial x_2}{\partial w_1} - x_1$$ \hspace{1cm} (15)

Applying Equations (8) and (9) to Equation (15) yields the result in Equation (11), i.e.,

$$\frac{\partial \pi}{\partial w_1} = -x_1(w_1, w_2, p)$$, which is the application of the Envelope Theorem to the profit function in Equation (10).