Introducción a la Análisis Convexo
(Tigran Melkonyan, Universidad de Nevada, Reno)

1. Bases

\(\mathbb{R} \) denota los números reales

\(\mathbb{R}^n \) denota el espacio de vectores reales de \(n \) dimensiones (también llamado puntos) \(\mathbf{x} = (x_1, \ldots, x_n) \)

Definición: El producto interior de dos vectores \(\mathbf{x} \) y \(\mathbf{y} \) en \(\mathbb{R}^n \) se expresa por

\[
\mathbf{x}' \mathbf{y} = x_1y_1 + \ldots + x_ny_n.
\]

(el producto interior es frecuentemente denotado por \(\langle \mathbf{x}, \mathbf{y} \rangle \)).

Definición: El segmento de línea cerrado entre vectores \(\mathbf{x} \) y \(\mathbf{y} \) en \(\mathbb{R}^n \) se define como

\[
\{ \alpha \mathbf{x} + (1-\alpha) \mathbf{y} : \alpha \in [0, 1] \}.
\]

Definición: Para cualquier vector no-nulo \(\mathbf{b} \in \mathbb{R}^n \) y cualquier \(\beta \in \mathbb{R} \), los conjuntos

\[
\{ \mathbf{x} : \mathbf{x}'\mathbf{b} \leq \beta \} \quad \text{y} \quad \{ \mathbf{x} : \mathbf{x}'\mathbf{b} \geq \beta \}
\]

son llamados espacios cúbicos cerrados.
The sets
\[\{ x : x'b < \beta \} \] and \[\{ x : x'b > \beta \} \]
are called **open half-spaces**.

The set
\[\{ x : x'b = \beta \} \]
is called a **hyperplane**. The vector \(b \) is called the normal to hyperplane \(H \).

The two closed half-spaces associated with \(H \) are denoted by
\[H^+ = \{ x : x'b \geq \beta \} \] and \[H^- = \{ x : x'b \leq \beta \} \].

Note that \(H^+ \cup H^- = \mathbb{R}^n \) and \(H^+ \cap H^- = H \).

Definition: A vector sum
\[\alpha_1 x^1 + \ldots + \alpha_m x^m \]
is called a **convex combination of** \(x^1, \ldots, x^m \) if
\(\alpha_1, \ldots, \alpha_m \geq 0 \) and \(\alpha_1 + \ldots + \alpha_m = 1 \).

Definition: A subset \(C \) of \(\mathbb{R}^n \) is called **convex** if
\[\alpha x + (1- \alpha) y \in C \ \forall x, y \in C \ \forall \alpha \in [0, 1]. \]

(that is, for any points \(x, y \) in \(C \), \(C \) contains the line segment between \(x \) and \(y \))
2. The algebra of convex sets

Theorem 1: The intersection of an arbitrary collection of convex sets is convex.

Definition: A scalar multiple αC of set C in \mathbb{R}^n is defined as

$$\alpha C = \{ \alpha x : x \in C \}.$$

Theorem 2: A scalar multiple of a convex set is convex.

Definition: A sum of sets C_1 and C_2 is defined as

$$C_1 + C_2 = \{ x_1 + x_2 : x_1 \in C_1, x_2 \in C_2 \}.$$

Theorem 3: If C_1 and C_2 are convex sets in \mathbb{R}^n then so is their sum $C_1 + C_2$.
Exercise Set 1

Exercise 1: Prove Theorem 1.

Exercise 2: Prove Theorem 2.

Exercise 3: Prove Theorem 3.

Exercise 4: Prove that if C is a convex set and $\alpha_1, \alpha_2 \geq 0$ then $(\alpha_1 + \alpha_2)C = \alpha_1 C + \alpha_2 C$.
3. Convex functions and their properties

Definition: Let C be a convex subset of \mathbb{R}^n. A function $f : C \rightarrow \mathbb{R}$ is called **convex** if
\[
f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y), \quad \forall x, y \in C.
\]

Definition: Let C be a convex subset of \mathbb{R}^n. A function $f : C \rightarrow \mathbb{R}$ is called **concave** if
\[
f(\alpha x + (1 - \alpha)y) \geq \alpha f(x) + (1 - \alpha)f(y), \quad \forall x, y \in C.
\]

Definition: Let C be a convex subset of \mathbb{R}^n. A function $f : C \rightarrow \mathbb{R}$ is called **strictly convex** if
\[
f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y) \quad \forall x, y \in C \text{ with } x \neq y.
\]

Theorem 4: f is a convex function if and only if $-f$ is a concave function.

Theorem 5: If f is a convex function, then all of its level sets $\{x \in C : f(x) \leq \beta\}$ and $\{x \in C : f(x) < \beta\}$, where β is a scalar, are convex.
Theorem 6: (Jensen’s inequality) Let f be a function from convex set $C \subseteq \mathbb{R}^n$ to \mathbb{R}.

f is convex on C if and only if

$$f(\alpha_1x^1 + \ldots + \alpha_mx^m) \leq \alpha_1f(x^1) + \ldots + \alpha_mf(x^m)$$

for all $\alpha_1,..,\alpha_m$ such that $\alpha_1,..,\alpha_m \geq 0$ and $\alpha_1+\ldots+\alpha_m=1$.

Theorem 7: Let f be a twice continuously differentiable real-valued function on an open interval (a, b). Then f is convex if and only if its second derivative $f''(x)$ is non-negative for all $x \in (a,b)$.

Definition: Let Q be an $n \times n$ matrix. Q is **positive semi-definite** if

$$x'(Qx) \geq 0$$

for every $x \in \mathbb{R}^n$.

Q is **positive definite** if

$$x'(Qx) > 0$$

for every $x \in \mathbb{R}^n$ such that $x \neq 0$.

Q is **negative semi-definite** if

$$x'(Qx) \leq 0$$

for every $x \in \mathbb{R}^n$.

Q is **negative definite** if

$$x'(Qx) < 0$$

for every $x \in \mathbb{R}^n$ such that $x \neq 0$.
These definitions are very frequently to verify. The following result is extremely useful to check for positive and negative (semi-)definiteness. To introduce the result we will need the following definitions.

Definition: The *ith principal minor* of Q is the matrix Q_i formed by the first i rows and columns of Q.

So, the first principal minor of Q is the matrix $Q_1 = (q_{11})$, the second principal minor is the matrix $Q_2 = \begin{pmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{pmatrix}$, and so on.
Theorem 8: Consider $n \times n$ matrix Q.

1. Q is positive definite if and only if all of Q’s principal minors Q_1, \ldots, Q_n have strictly positive determinants.

2. Q is positive semi-definite if and only if all of Q’s principal minors Q_1, \ldots, Q_n have nonnegative determinants.

3. Q is negative definite if and only if the determinants of Q’s principal minors Q_1, \ldots, Q_n are nonzero and alternate in sign starting with $\det(Q_1) < 0$.

4. Q is negative semi-definite if and only if the determinants of Q’s principal minors Q_1, \ldots, Q_n alternate in sign starting with $\det(Q_1) \leq 0$.

Example:

$$Q = \begin{pmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{pmatrix}.$$
Definition: Let \(f(x_1, \ldots, x_n) \) be a twice continuously differentiable real-valued function defined on a set \(C \subseteq \mathbb{R}^n \). **Hessian matrix** \(H \) of function \(f \) is defined as

\[
H(f) = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}
\]

Note that the Hessian matrix is a symmetric \(n \times n \) matrix.

Theorem 9: Let \(f \) be a twice continuously differentiable real-valued function on an open convex set \(C \subseteq \mathbb{R}^n \). Then

1. \(f \) is convex on \(C \) if and only if its Hessian matrix is positive semi-definite for every \(x \in C \).
2. \(f \) is concave on \(C \) if and only if its Hessian matrix is negative semi-definite for every \(x \in C \).
3. \(f \) is strictly convex on \(C \) if and only if its Hessian matrix is positive definite for every \(x \in C \).
4. \(f \) is strictly concave on \(C \) if and only if its Hessian matrix is negative definite for every \(x \in C \).
Definition: A function f on \mathbb{R}^n is said to be **positively homogeneous of degree 1** if for every $x \in \mathbb{R}^n$ one has

$$f(\alpha x) = \alpha f(x) \text{ for all } \alpha \in (0, \infty).$$

Theorem 10: A positively homogeneous function f on \mathbb{R}^n is convex if and only if

$$f(x + y) \leq f(x) + f(y), \quad \forall x, y \in \mathbb{R}^n.$$

Theorem 11: A real-valued convex function f on \mathbb{R}^n is continuous.

Theorem 12: A real-valued convex function f on \mathbb{R}^n is differentiable everywhere except for (at most) a set of measure zero.
Exercise Set 2

Exercise 5: Prove Theorem 4.

Exercise 6: Prove Theorem 5.

Exercise 7: Prove Theorem 6.

Exercise 8: Prove Theorem 7.

Exercise 9: Check whether the following matrices are positive definite, positive semi-definite, negative definite, negative semi-definite or none of the above:

(i) \(Q = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} \); (ii) \(Q = \begin{pmatrix} -2 & 4 \\ 4 & -8 \end{pmatrix} \);

(iii) \(Q = \begin{pmatrix} -2 & 2 \\ 2 & -4 \end{pmatrix} \); (iv) \(Q = \begin{pmatrix} 2 & 4 \\ 4 & 3 \end{pmatrix} \).

Exercise 10: Check whether the following function is convex, strictly convex, concave, strictly concave, or none of the above:

\[f(x_1, x_2) = x_1^{0.25}x_2^{0.5}. \]

Exercise 11: Prove Theorem 10.
4. Functional operations on convex functions

Theorem 13: Let \(f \) be a convex function from \(\mathbb{R}^n \) to \(\mathbb{R} \) and let \(\varphi \) be a non-decreasing convex function from \(\mathbb{R} \) to \(\mathbb{R} \). Then, \(h(x) = \varphi(f(x)) \) is convex on \(\mathbb{R}^n \).

Corollary of Theorem 13: If \(f \) is a real-valued convex function on \(\mathbb{R}^n \) and \(a \) is a non-negative constant, then \(af \) is convex on \(\mathbb{R}^n \).

Theorem 14: If \(f_1 \) and \(f_2 \) are real-valued convex functions on \(\mathbb{R}^n \), then \(f_1 + f_2 \) is convex on \(\mathbb{R}^n \).

Theorem 15: The pointwise supremum of an arbitrary collection of convex functions is convex. That, if \(f_i \)‘s (for \(i \in I \)) are convex on \(\mathbb{R}^n \) then function
\[
 f(x) = \sup \{ f_i(x) : i \in I \}
\]
is convex on \(\mathbb{R}^n \).
Theorem 16: If $f(x; y)$ is convex in x for each $y \in A$, then

$$g(x) = \sup \{ f(x; y) : y \in A \}$$

is a convex function.

Theorem 17: If $f(x; y)$ is convex in $(x; y)$ and C is a convex set, then

$$g(x) = \inf \{ f(x; y) : y \in C \}$$

is a convex function.

Exercise Set 3

Exercise 12: Prove Theorem 13.

Exercise 13: Prove Theorem 14.

Exercise 14: Prove Theorem 15.

Exercise 15: Prove Theorem 16.

Exercise 16: Prove Theorem 17.
5. Quasiconvex functions.

Definition: Let C be a convex subset of \mathbb{R}^n. A function $f : C \to \mathbb{R}$ is called **quasiconvex** if its lower level sets $\{x \in C : f(x) \leq \beta\}$, where β is an arbitrary scalar, are convex.

Definition: Let C be a convex subset of \mathbb{R}^n. A function $f : C \to \mathbb{R}$ is called **quasiconcave** if its upper level sets $\{x \in C : f(x) \geq \beta\}$, where β is an arbitrary scalar, are convex.

Theorem 18: Function f is quasiconvex if and only if function $-f$ is quasiconcave.

Theorem 19: Function f is quasiconvex iff
\[f(\alpha x + (1 - \alpha)y) \leq \min \{f(x), f(y)\} \quad \forall x, y \in C \quad \forall \alpha \in [0, 1]. \]
Exercise Set 4

Exercise 17: Prove Theorem 18.

Exercise 18: Prove Theorem 19.

Exercise 19: State and prove an analogue of Theorem 19 for quasiconcave functions.

Exercise 20: Demonstrate that $f(x) = \sqrt{|x|}$ is quasiconvex.

Exercise 21: Demonstrate that $f(x_1, x_2) = x_1 x_2$ is quasiconcave.

Exercise 22: Consider a continuous increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$. Decide whether f is concave, convex, quasiconcave, quasiconvex, or none of the above. Justify your answer.

Definition: Let C_1 and C_2 be nonempty sets in \mathbb{R}^n. A hyperplane H is said to separate C_1 and C_2 if C_1 is contained in one of the closed half-spaces associated with H while C_2 is contained in the opposite closed half-space.

Definition: Let C_1 and C_2 be nonempty sets in \mathbb{R}^n. A hyperplane H is said to properly separate C_1 and C_2 if H separates C_1 and C_2 and C_1 and C_2 are not both contained in H.

Definition: Let C_1 and C_2 be nonempty sets in \mathbb{R}^n. A hyperplane H is said to strongly separate C_1 and C_2 if $C_1 + \varepsilon B$ is contained in one of the open half-spaces associated with H while $C_2 + \varepsilon B$ is contained in the opposite open half-space, where $B \equiv \{x : |x| \leq 1\}$.

Recall that $H = \{x : x'b = \beta\}$, $H^+ = \{x : x'b \geq \beta\}$ and $H = \{x : x'b \leq \beta\}$.
Theorem 20: Let C_1 and C_2 be nonempty sets in R^n. There exists a hyperplane properly separating C_1 and C_2 if and only if there exists a vector b such that

(i) $\inf \{x'b : x \in C_1\} \geq \sup \{x'b : x \in C_2\}$ and

(ii) $\sup \{x'b : x \in C_1\} > \inf \{x'b : x \in C_2\}$.

Theorem 21: Let C_1 and C_2 be nonempty disjoint closed convex sets in R^n. Then there exists a hyperplane strongly separating C_1 and C_2.

Corollary of Theorem 21: Let C be a closed convex set in R^n and let $x \not\in C$. Then there exists a hyperplane strongly separating $\{x\}$ and C. That is, there exist $b \in R^n$ and $\beta \in R$ such that $x'b > \beta$ and $y'b < \beta$ for all $y \in C$.

Theorem 22: Let C_1 and C_2 be nonempty disjoint convex sets in R^n. Then there exists a hyperplane separating C_1 and C_2.
Definition: Let C be a convex set in R^n. A **supporting half-space** to C is a closed half-space which contains C and contains a point in the boundary of C. A **supporting hyperplane** to C is the boundary of a supporting half-space to C. More formally, $H = \{ x : x'b = \beta \}$ is a supporting hyperplane to C if

i) if either $y'b \leq \beta \quad \forall \ y \in C$ or $y'b \geq \beta \quad \forall \ y \in C$; and

ii) $\exists \ y$ in the boundary of C such that $y'b = \beta$.

(Note that the above definition is slightly different from the “common” definition where a supporting half-space is defined as a closed half-space which contains C and has a point of C in its boundary.)

Theorem 23: *(Supporting Hyperplane Theorem)* Let C be a convex set in R^n. Then there exists a supporting hyperplane at every boundary point of C.

Exercise Set 5

Exercise 23: Prove Theorem 20.

Exercise 24: Prove Theorem 21.

Exercise 25: Prove Theorem 22.

Exercise 26: Prove Theorem 23.
7. Convex hull.

Definition: Convex hull of a set C, denoted by $\text{conv}(C)$, is the intersection of all convex sets containing C.

Theorem 24: $\text{conv}(C)$ consists of the set of all convex combinations of points from C.

Theorem 25: The closure of the convex hull of C ($\text{cl}(\text{conv}(C))$) is equal to the intersection of all the closed half-spaces containing C.
8. Conjugates of convex functions.

Definition: Let C be a convex subset of R^n. The **extended real line** is defined as

$$[-\infty, +\infty] = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}.$$

An **extended real-valued function** f is defined as $f: C \rightarrow [-\infty, +\infty]$.

Definition: Let f be an extended real-valued function on R^n. The **conjugate** of f is function $f^*(x^*)$ on R^n defined by

$$f^*(x^*) = \sup \{ x^* x^* - f(x) : x \in R^n \}.$$

Theorem 26: The conjugate of f^* is f.

Theorem 27: The conjugate of a convex function is convex.

Examples: profit, revenue, and cost functions
Exercise Set 6

Exercise 28: Prove Theorem 27.

Exercise 29: Determine the conjugate of function
\[f(x) = \exp(x), \quad x \in \mathbb{R}. \]

Definition: Let C be a nonempty set in \mathbb{R}^n. The (upper) **support function** of set C is defined as

$$\delta^*(x|C) = \sup \{ x'y : y \in C \}.$$

(For the lower support function, sup is replaced by inf).

Definition: Let C be a nonempty set in \mathbb{R}^n. The **indicator function** of set C is defined as

$$\delta(x|C) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{if } x \notin C \end{cases}.$$

Theorem 27: The indicator function and the support function of a closed convex set are conjugate to each other.

Examples: profit, revenue, and cost functions