Group actions on graphs

Valentin Deaconu, Alex Kumjian

(preliminary version)

GPOTS 2013, Berkeley, May 22, 2013
Let a group G act on a directed graph E. This determines a representation ρ of G on the C^*-correspondence \mathcal{H}_E and an action on the graph algebra $C^*(E)$.

Our goal is to study the fixed point algebra $C^*(E)^G$ and the crossed product $C^*(E) \rtimes G$ when G is compact.

We define the Doplicher-Roberts algebra O_ρ associated to ρ, constructed from intertwiners (ρ^m, ρ^n), where $\rho^n = \rho \otimes^n$ on $\mathcal{H}_E^\otimes n$.

If \mathcal{H}_E is finite projective, we prove that $O_\rho \cong C^*(E)^G$.

If E and G are finite, we prove that $C^*(E) \rtimes G$ is isomorphic to the C^*-algebra of a graph of (minimal) C^*-correspondences and is SME to a graph algebra.

This gives a method of computing the K-theory of $C^*(E) \rtimes G$.
Let $E = (E^0, E^1, r, s)$ be a (topological) graph. Denote by $\mathcal{H} = \mathcal{H}_E$ its C^*-correspondence over $A = C_0(E^0)$, constructed from $C_c(E^1)$.

A locally compact group G acts on E if there is a continuous morphism $G \rightarrow Aut(E)$.

We get a representation $\rho : G \rightarrow \mathcal{L}_\mathbb{C}(\mathcal{H})$ by invertible \mathbb{C}-linear operators on \mathcal{H} and an action of G on A by \ast-automorphisms such that

$$\langle \rho(g)(\xi), \rho(g)(\eta) \rangle = g \cdot \langle \xi, \eta \rangle,$$

$$\rho(g)(\xi a) = (\rho(g)(\xi))(g \cdot a), \quad \rho(g)(a \cdot \xi) = (g \cdot a)(\rho(g)(\xi)).$$

We also get an action of G on the graph algebra $C^*(E)$ associated to the C^*-correspondence $\mathcal{H} = \mathcal{H}_E$.
If G, E are discrete, the action is free and E is locally finite, Kumjian and Pask proved that
\[C^* (E)^G \cong C^* (E/G), \]
\[C^* (E) \rtimes G \cong C^* (E/G) \otimes K(\ell^2 (G)). \]

A similar result for the reduced crossed product $C^* (E) \rtimes_r G$ was proved by D., Kumjian and Quigg for free and proper actions of locally compact groups on topological graphs.

If G is abelian and the action of G on $C^* (E)$ is associated to a cocycle $c : E^1 \to \hat{G}$, then
\[C^* (E) \rtimes G \cong C^* (E(c)), \]
where $E(c)$ is the skew product graph $(\hat{G} \times E^0, \hat{G} \times E^1, r, s)$ with
\[r(\chi, e) = (\chi c(e), r(e)), s(\chi, e) = (\chi, s(e)). \]
Doplicher-Roberts algebras

- If G acts on a A–A C^*-correspondence \mathcal{H} via $\rho : G \to \mathcal{L}_\mathbb{C}(\mathcal{H})$, consider the tensor power $\rho^n : G \to \mathcal{L}_\mathbb{C}(\mathcal{H}^\otimes n)$ and
\[(\rho^m, \rho^n) = \{T : \mathcal{H}^\otimes n \to \mathcal{H}^\otimes m \mid T \text{ is } A\text{-linear and } T \rho^n = \rho^m T\}\].

- The linear span of $\bigcup_{m,n}(\rho^m, \rho^n)$ has a natural multiplication and involution, after identifying T with $T \otimes I$.

- The Doplicher-Roberts algebra \mathcal{O}_ρ is defined as the C^*-closure of the linear span of $\bigcup_{m,n}(\rho^m, \rho^n)$.

Theorem. Let E be a topological graph such that \mathcal{H}_E is finite projective and the left multiplication is injective. If G is a compact group acting on E, then $\mathcal{O}_\rho \cong C^*(E)^G$.

Proof. Since \mathcal{H}_E is finite projective and the left multiplication is injective, $C^*(E)$ is isomorphic to the C^*-algebra generated by the span of $\bigcup_{m,n}\mathcal{L}(\mathcal{H}^\otimes n, \mathcal{H}^\otimes m)$ after we identify T with $T \otimes I$.

- Note that G acts on $\mathcal{L}(\mathcal{H}^\otimes n, \mathcal{H}^\otimes m)$ by $(g \cdot T)(\xi) = \rho^m(g)T(\rho^n(g^{-1})\xi)$ and the fixed point algebra is (ρ^m, ρ^n), so $C^*(E)^G$ is isomorphic to \mathcal{O}_ρ.

Valentin Deaconu, Alex Kumjian

Group actions on graphs
Corollary. Moreover, if $C^*(E)$ is simple, G is finite and the action is outer, then O_ρ and $C^*(E) \rtimes G$ are simple and have the same K-theory.

Proof. We use the following result of Kishimoto: if A is simple and $\alpha : G \to Aut(A)$ is an outer action, then $A \rtimes_\alpha G$ is simple.

Example. Let a finite group G act on the graph E with one vertex and $n \geq 2$ edges. Denote by ρ the corresponding representation on $\mathcal{H} = \mathcal{H}_E = \mathbb{C}^n$.

Consider the graph with the incidence matrix $B = B(\rho)$, where $B(v, w)$ is the multiplicity of w in $v \otimes \rho$ for $v, w \in \hat{G}$.

Raeburn et.al. proved that O_ρ is a full corner in the Cuntz-Krieger algebra O_B.

More generally, given a faithful representation ρ of a compact group, Kumjian et. al. realize O_ρ as a corner in a graph C^*-algebra and as a groupoid algebra.
Crossed products of C^*-correspondences

- Let A be a C^*-algebra and let \mathcal{H} be a C^*-correspondence over A. An action of G on \mathcal{H} and A as above determines an action on the Cuntz-Pimsner algebra $\mathcal{O}_\mathcal{H}$.

- The crossed product $\mathcal{H} \rtimes G = \mathcal{H} \otimes_A (A \rtimes G)$ becomes a C^*-correspondence over $A \rtimes G$ after the completion of $C_c(G, \mathcal{H})$ using the operations

$$\langle \xi, \eta \rangle(t) = \int_G s^{-1} \cdot \langle \xi(s), \eta(st) \rangle ds,$$

$$\langle \xi \cdot f \rangle(t) = \int_G \xi(s) s \cdot (f(s^{-1}t)) ds, \quad (f \cdot \xi)(t) = \int_G f(s) \cdot (s \cdot \xi(s^{-1}t)) ds,$$

where $\xi \in C_c(G, \mathcal{H}), f \in C_c(G, A)$.

- Hao and Ng proved that if G is amenable, then

$$\mathcal{O}_{\mathcal{H} \rtimes G} \cong \mathcal{O}_\mathcal{H} \rtimes G.$$
Main result

- **Theorem.** Given a finite graph E and a finite group G acting on E, the crossed product $C^*(E)
times G$ is the C^*-algebra of a graph of C^*-correspondences. Moreover, $C^*(E)
times G$ is SME to a graph C^*-algebra, where the number of vertices is the cardinality of the spectrum of $C(E^0)
times G$.

- **Proof.** We study the finite dimensional C^*-correspondence $\mathcal{H}_E
times G$ over the finite dimensional C^*-algebra $C(E^0)
times G$.

Let $C(E^0)
times G \cong \bigoplus_{i=1}^{n} A_i$, where A_i are matrix algebras. This decomposition is obtained in two stages, from the orbits in E^0 and from the characters of the stabilizer groups.

Consider the graph with n vertices and at each vertex v_i we assign the C^*-algebra A_i. The edges and the assigned C^*-correspondences are constructed from the orbits in E^1 and multiplicities.
It follows that $C^*(E) \rtimes G$ is isomorphic to the C^*-algebra of this graph of (minimal) C^*-correspondences.

For the second part we use

Lemma. Suppose A and B are SME C^*-algebras with A-B imprimitivity bimodule \mathcal{X}. If \mathcal{H} is a C^*-correspondence over A, then $\mathcal{H}' = \mathcal{X}^* \otimes_A \mathcal{H} \otimes_A \mathcal{X}$ is a C^*-correspondence over B such that $\mathcal{O}_\mathcal{H}$ and $\mathcal{O}_{\mathcal{H}'}$ are SME.

Proof. Let $\mathcal{R} = \mathcal{H} \otimes_A \mathcal{X}$ and let $S = \mathcal{X}^*$. Then $\mathcal{R} \otimes_B S \cong \mathcal{H}, S \otimes_A \mathcal{R} \cong \mathcal{H}'$, so by a theorem of Muhly and Solel, we get that $\mathcal{O}_\mathcal{H}$ and $\mathcal{O}_{\mathcal{H}'}$ are SME.

Corollary. The K-theory of $C^*(E) \rtimes G$ can be computed as the K-theory of a graph algebra.
Let S_3 act on the graph E with one vertex and three loops by permuting the loops. We get a representation $\rho : S_3 \rightarrow \mathcal{L}(\mathbb{C}^3)$ and an action on \mathcal{O}_3.

Since $S_3 \cong \mathbb{Z}_3 \rtimes \mathbb{Z}_2$, we have $\mathcal{O}_3 \rtimes S_3 \cong (\mathcal{O}_3 \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_2$.

It follows that $\mathcal{O}_3 \rtimes \mathbb{Z}_3$ is isomorphic to $C^*(E(c))$, where $c : E^1 \rightarrow \hat{\mathbb{Z}}_3$ is a cocycle and $E(c)$ is the graph with three vertices v_1, v_2, v_3 and nine edges connecting each v_i with v_j.

The group \mathbb{Z}_2 acts on $E(c)$ by fixing v_1 and interchanging v_2 with v_3. Here $A = \mathbb{C}^3$, $A \rtimes \mathbb{Z}_2 \cong \mathbb{C} \oplus \mathbb{C} \oplus M_2 \cong C^*(S_3)$, $\mathcal{H}_{E(c)} = \mathbb{C}^9$ and $\mathcal{H}_{E(c)} \rtimes \mathbb{Z}_2$ decomposes accordingly.

It follows that $\mathcal{O}_\rho \cong \mathcal{O}_3^{S_3}$ and $\mathcal{O}_3 \rtimes S_3$ are SME to the graph algebra with incidence matrix

$$
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 2
\end{pmatrix}
$$

Therefore,$$
K_0(\mathcal{O}_3 \rtimes S_3) \cong K_0(\mathcal{O}_\rho) \cong \mathbb{Z}, \ K_1(\mathcal{O}_3 \rtimes S_3) \cong K_1(\mathcal{O}_\rho) \cong \mathbb{Z}.
$$
References

