1. Find the directions in which the function \(f(x,y) = x^2y + e^{xy}\sin y \) increases and decreases most rapidly at the point \((1,0)\).

\[
\nabla f = \langle 2xy + ye^{xy}\sin y, x^2 + xe^{xy}\sin y + e^{xy}\cos y \rangle
\]

\[
\nabla f(1,0) = \langle 0, 2 \rangle
\]

\(f \) increases most rapidly in the direction \(\langle 0, 2 \rangle \).

\(f \) decreases most rapidly in the direction \(\langle 0, -2 \rangle \).

2. Find equations of the tangent plane and the normal line at \((1, -1, 2)\) for the surface \(x^2 + 2xy - y^2 + z^2 = 2 \).

let \(F(x,y,z) = x^2 + 2xy - y^2 + z^2 \)

\[
\nabla F = \langle 2x + 2y, 2x - 2y, 2z \rangle
\]

\[
\nabla F(1, -1, 2) = \langle 0, 4, 4 \rangle
\]

Tangent plane \(4(y+1) + 4(z-2) = 0 \)

or \(y + 2z = 1 \)

Normal line \(\begin{cases}
 x = 1 \\
 y = -1 + 4t \\
 z = 2 + 4t
\end{cases} \)