All notations are from lectures. Bold numbers are only for STAT653 students.

3.1 [Discussed in class.] Prove that if \(X_i \sim \text{Bernoulli}(p) \), \(i = 1, 2, \ldots \), and \(N \sim \text{Poisson}(\lambda) \), then
\[
\sum_{i=1}^{N} X_i \sim \text{Poisson}(\lambda p).
\]

3.2 Find the pgf, mgf, expected value, and \(p_0 \) for the rv \(X \) defined as the number of successes in \(N \) independent Bernoulli trials with the same success probability \(p \) if \(N \) has the following distribution a) Poisson; b) Geometric; c) Negative binomial; d) Bernoulli.

3.3 Compare and discuss the expected values and the probabilities \(p_0 \) (the probability to have no successes) found in the problem 3.2, items a) - c), assuming that the expected number of successes is fixed.

3.4 Prove the moment extraction formula, for the \(k \)-th moment \(m_k \) and the mgf \(M(s) \):
\[
m_k = \frac{d^k}{ds^k} M(s) \bigg|_{s=0}.
\]

3.5 Show that the variance of a rv \(X \) with pgf \(G(z) \) is given by
\[
\text{Var}(X) = G''(1) + G'(1) - [G'(1)]^2.
\]

3.6 Use the mgf approach to find the variance of the following distributions: a) Geometric; b) Poisson.

3.7 Let \(X_i \) be iid rvs with a common mgf \(M_X(z) \) and \(Y = \sum_{i=1}^{n} X_i \). Show that the mgf of \(Y \) is given by
\[
M_Y(z) = [M_X(z)]^n.
\]

3.8 Prove that a series of Binomial distributions with parameters \((n_i, p_i)\) such that \(n_i p_i = \lambda, n_i \to \infty \) converges to the Poisson distribution with parameter \(\lambda \). [Hint: Use convergence of the corresponding PGFs.]
3.9 We will call N-strategy the following rule of playing a roulette game: One covers N distinct numbers every game, betting $1 on each number, or N total. Find the payoff distribution, mean, and variance for an N-strategy. Discuss the similarities and differences of different strategies. Suggest the “best” strategy and support your choice.