2.7. Let \(A \) be as given in Exercise 2.6.
(a) Determine the eigenvalues and eigenvectors of \(A \).
(b) Write the spectral decomposition of \(A \).
(c) Find \(A^{-1} \).
(d) Find the eigenvalues and eigenvectors of \(A^{-1} \).

2.8. Given the matrix
\[
A = \begin{bmatrix}
1 & 2 \\
2 & -2
\end{bmatrix}
\]
find the eigenvalues \(\lambda_1 \) and \(\lambda_2 \) and the associated normalized eigenvectors \(e_1 \) and \(e_2 \).
Determine the spectral decomposition (2-16) of \(A \).

2.9. Let \(A \) be as in Exercise 2.8.
(a) Find \(A^{-1} \).
(b) Compute the eigenvalues and eigenvectors of \(A^{-1} \).
(c) Write the spectral decomposition of \(A^{-1} \), and compare it with that of \(A \) from Exercise 2.8.

2.10. Consider the matrices
\[
A = \begin{bmatrix}
4 & 4.001 \\
4.001 & 4.002
\end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix}
4 & 4.001 \\
4.001 & 4.002
\end{bmatrix}
\]
These matrices are identical except for a small difference in the \((2,2)\) position. Moreover, the columns of \(A \) (and \(B \)) are nearly linearly dependent. Show that \(A^{-1} \approx (-3)B^{-1} \). Consequently, small changes—perhaps caused by rounding—can give substantially different inverses.

2.11. Show that the determinant of the \(p \times p \) diagonal matrix \(A = \{a_{ij}\} \) with \(a_{ij} = 0, i \neq j \) is given by the product of the diagonal elements; thus, \(|A| = a_{11}a_{22} \cdots a_{pp}\).

Hint: By Definition 2A.24, \(|A| = a_{11}A_{11} + 0 + \cdots + 0\). Repeat for the submatrix \(A_{11} \) obtained by deleting the first row and first column of \(A \).

2.12. Show that the determinant of a square symmetric \(p \times p \) matrix \(A \) can be expressed as the product of its eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_p \); that is, \(|A| = \prod_{\lambda_i} \lambda_i\).

Hint: From (2-16) and (2-20), \(A = P \Lambda P' \) with \(P'P = I \). From Result 2A.11(e), \(|A| = |P\Lambda P'| = |P||\Lambda P'| = |P||\Lambda||P'| = |\Lambda||I|\), since \(|I| = |P'P| = |P'||P|\). Apply Exercise 2.11.

2.13. Show that \(|Q| = +1 \) or \(-1\) if \(Q \) is a \(p \times p \) orthogonal matrix.

Hint: \(|QQ'| = |I|\). Also, from Result 2A.11, \(|Q||Q'| = |Q|^2\). Thus, \(|Q|^2 = |I|\). Now use Exercise 2.11.

2.14. Show that \(Q A Q \) and \(A \) have the same eigenvalues if \(Q \) is orthogonal.

Hint: Let \(\lambda \) be an eigenvalue of \(A \). Then \(0 = |A - \lambda I| \). By Exercise 2.13 and Result 2A.11(e), we can write \(0 = |Q'||A - \lambda I||Q| = |Q'AQ - \lambda I| \), since \(Q'Q = I \).

2.15. A quadratic form \(x'Ax \) is said to be positive definite if the matrix \(A \) is positive definite. Is the quadratic form \(3x_1^2 + 3x_2^2 - 2x_1x_2 \) positive definite?

2.16. Consider an arbitrary \(n \times p \) matrix \(A \). Then \(A'A \) is a symmetric \(p \times p \) matrix. Show that \(A'A \) is necessarily nonnegative definite.

Hint: Set \(y = Ax \) so that \(y'y = x'A'Ax \).
2.17. Prove that every eigenvalue of a $k \times k$ positive definite matrix A is positive.
Hint: Consider the definition of an eigenvalue, where $Ae = \lambda e$. Multiply on the left by e' so that $e'Ae = \lambda e'e$.

2.18. Consider the sets of points (x_1, x_2) whose "distances" from the origin are given by

\[c^2 = 4x_1^2 + 3x_2^2 - 2\sqrt{2}x_1x_2 \]

for $c^2 = 1$ and for $c^2 = 4$. Determine the major and minor axes of the ellipses of constant distances and their associated lengths. Sketch the ellipses of constant distances and comment on their positions. What will happen as c^2 increases?

2.19. Let \(A^{1/2} = \sum_{i=1}^m \sqrt{\lambda_i} e_i e_i' = P \Lambda^{1/2} P', \) where \(PP' = P'P = I \). (The \(\lambda_i \)'s and the \(e_i \)'s are the eigenvalues and associated normalized eigenvectors of the matrix \(A \).) Show Properties (1)-(4) of the square-root matrix in (2-22).

2.20. Determine the square-root matrix \(A^{1/2} \), using the matrix \(A \) in Exercise 2.3. Also, determine \(A^{-1/2} \), and show that \(A^{1/2} A^{-1/2} = A^{-1/2} A^{1/2} = I \).

2.21. (See Result 2A.15) Using the matrix

\[
A = \begin{bmatrix}
1 & 1 \\
2 & -2 \\
2 & 2
\end{bmatrix}
\]

(a) Calculate \(A'A \) and obtain its eigenvalues and eigenvectors.

(b) Calculate \(AA' \) and obtain its eigenvalues and eigenvectors. Check that the nonzero eigenvalues are the same as those in part a.

(c) Obtain the singular-value decomposition of \(A \).

2.22. (See Result 2A.15) Using the matrix

\[
A = \begin{bmatrix}
4 & 8 & 8 \\
3 & 6 & -9
\end{bmatrix}
\]

(a) Calculate \(AA' \) and obtain its eigenvalues and eigenvectors.

(b) Calculate \(A'A \) and obtain its eigenvalues and eigenvectors. Check that the nonzero eigenvalues are the same as those in part a.

(c) Obtain the singular-value decomposition of \(A \).

2.23. Verify the relationships \(V^{1/2} \rho V^{1/2} = \Sigma \) and \(\rho = (V^{1/2})^{-1} \Sigma (V^{1/2})^{-1} \), where \(\Sigma \) is the \(p \times p \) population covariance matrix [Equation (2-32)], \(\rho \) is the \(p \times p \) population correlation matrix [Equation (2-34)], and \(V^{1/2} \) is the population standard deviation matrix [Equation (2-35)].

2.24. Let \(X \) have covariance matrix

\[
\Sigma = \begin{bmatrix}
4 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Find

(a) \(\Sigma^{-1} \)

(b) The eigenvalues and eigenvectors of \(\Sigma \).

(c) The eigenvalues and eigenvectors of \(\Sigma^{-1} \).