Matrix algebra with \(\mathbb{R} \)

Goals:
1) Learn how to perform basic matrix operations
2) Learn how to compute basic statistics for multivariate data

Assignments:

1. Download the data set “longley” from the \(\mathbb{R} \) data base and learn about this data set from \(\mathbb{R} \)-help.
2. Find the variance-covariance matrix \(\Sigma \) for this data set.
3. Find the correlation matrix \(\rho \) for this data set.
4. Find the standard deviation matrix \(V^{1/2} \).
5. Show numerically that \(\Sigma = V^{1/2} \rho V^{1/2} \).
6. Find the deviation vectors \(d \) for GNP, Unemployment, and Population; show that the length of a deviation vector is proportional to the variance of the corresponding data set.
7. Plot scatterplot and statistical distance ellipses for pairs GNP-Unemployment and GNP-Population.
8. Find the eigenvalues and eigenvectors for the 2x2 variance matrices in 7.

Reports: Printed reports are due on Thursday, February 12, 2009.

Report preparation: Consider each report as a mini-paper. It should NOT be long, but it should provide a reader with all background information about the problem and methods you are using. Review the necessary theoretical material (use formulas if needed), describe the data. Do not insert the R-output in your report; instead, summarize it in tables or text in a nice readable form. If you feel some parts of the output should be included, put them in Appendix. Put your name on the title page.

Remarks:

- Install libraries *NOT* included in a standard \(\mathbb{R} \) package: **Matrix, car**, and **stats**.

- \(\mathbb{R} \)-codes used for class presentations are available on the course Web page.
The sample code (posted on the course web site) illustrates the following topics in vector-matrix operations:

1. **Vectors and Matrices**

 1. Defining vectors and matrices
 2. Element-wise operations
 3. Matrix operations
 4. Transposition
 5. Determinant
 6. Inverse matrix

2. **Positive-definite matrices, Quadratic forms**

 1. Eigenvalues and eigenvectors (spectral decomposition)
 2. Illustration of constant-distance ellipses

3. **Statistics**

 1. Random matrices
 2. Mean for multivariate data
 3. Variance-covariance
 4. Sample variance via matrix operators
Install libraries ...
library(Matrix) # ... for matrix operations
library(car) # ... for ellipse plots
library(stats) # ... for statistical operations

Defining vectors and matrices

Vectors
x<-c(1, 2, 3)
y<-c(4, 5, 6)
ones<-rep(1,3)

To make sure R respects vector dimensions, # save them as matrices
x<-as.matrix(x)
y<-as.matrix(y)
ones<-as.matrix(ones)

Matrices
A<-matrix(c(1, 2, 3, 4, 5, 6), byrow=T, ncol=3)
B<-matrix(c(1, 2, 3, 4, 5, 6), byrow=F, ncol=3)
D<-diag(c(1,2,3)) # diagonal matrix
I<-matrix(rep(1,9),ncol=3) # matrix of all ones

Basic operations with vectors and matrices
Transpose operation
#-------------------------
t(A)
t(B)
t(D)
t(I)

Element-wise operations
#-------------------------
A+B
A-B
A*B
A/B
A^B

x+y
x-y
x*y
x/y
y^x

Matrix and vector operations
#--
A%*%B # will give an error message: non-conformable
A%*%t(B)
t(A)%*%B
t(B)%*%A
B%*%t(A)
x%*%t(y)
t(x)%*%y
t(x)%*%t(A)
B%*%D # multiplies each column of B by a number
diag(c(3,4))%*%B # multiplies each row of B by a number

Determinant of a matrix
#-------------------------
det(D)
det(I)

Inverse matrix
#-------------------------
Di<-solve(D)
D%*%Di
Di%*%D
In the example below, you can create an almost-singular matrix
(I+N) by choosing small variance for the noise matrix N and
see what happens with the inverse
#--
N<-matrix(rnorm(9, sd=1), 3, 3)
Ii<-solve(I+N)
(I+N)%*%Ii
Ii%*%(I+N)

Eigenvalues and eigenvectors
#---------------------------------

eigen(D)

N<-matrix(rnorm(9, sd=1), 3, 3)
eigen(N)

Positive-definite matrices, Quadratic forms
#--
A<-matrix(rnorm(4), 2, 2) # random matrix
A<-A%*%t(A) # positive-definite matrix
det(A)
e<-eigen(A)
e

e$vectors %*% diag(e$values) %*% t(e$vectors) # the same as A
A
eigen(c(0,0),A,3,add=FALSE,xlim=c(-5,5),ylim=c(-5,5))
eigen(c(0,0),A,2,add=TRUE)
eigen(c(0,0),A,1,add=TRUE)

#================================
STATISTICS
#================================
Random matrix
#--------------------------------

x<-matrix(rnorm(6), ncol=2)
x
t(x)

Notice: mean(x) DOES NOT produce what we want!!!
#--
mean(x)

Matrix representation of the mean
#-----------------------------------
n<-dim(x)[1]
one<-matrix(rep(1, n), ncol=1)
one
mu<-t(x) %*% ones / n

Variance/st.dev of a vector
#-----------------------------------
x
var(x[,1])
var(x[,2])

sd(x[,1])
sd(x[,2])

var(x[,1], x[,2]) # covariance

Variance-covariance matrix
#-----------------------------
var(x)

Correlation matrix
#-----------------------------
cor(x)

Deviations
#-----------------------------
d1<-x[,1]-mu[1]*ones
d2<-x[,2]-mu[2]*ones
dl
d2
t(d1)%*%d2 # produces biased version of variance
(n-1)*var(x[,1], x[,2])

Sample variance-covariance
#-----------------------------

3x3 matrix of 1s
#-----------------------------
ones%*%t(ones)

identity matrix
#-----------------------------
diag(3)

Matrix computation of S (unbiased)
#-----------------------------
(1/(n-1)) * t(x) %*% (diag(3)-(1/n)*ones %*% t(ones)) %*% x

var(x) # ... produces the same result