Generalized variance
Multivariate Normal Distribution

Goals: 1) Illustrate generalized variance properties;
2) Learn how to generate Multivariate Normal rvs;
3) Learn how to test for multi-normality;
4) Learn how to write functions in R.

Assignments:
1. Generate a 1000x2 matrix N of iid standard Normal rvs; denote its columns by X and Y.
2. Create a 1000x3 matrix C with columns
 \[C_1 = X + Y \]
 \[C_2 = X - Y \]
 \[C_3 = 2X + 3Y \]
3. Find the generalized variance of C; discuss.
4. Find the linearly dependent columns in C using the spectral decomposition approach.

5. Generate 1000 multivariate Normal rvs with zero mean and variance-covariance matrix
 \[\Sigma = \begin{bmatrix} 12 & 4 \\ 4 & 5 \end{bmatrix} \]
6. Find the linear combination that transforms your rv to a standard 2-D Normal rv.

7. Generate 500 multivariate Normal rvs \(X_i \) with zero mean and variance-covariance matrix
 \[\Sigma = \begin{bmatrix} 10 & 4 & 1 \\ 4 & 5 & 4 \\ 1 & 4 & 10 \end{bmatrix} \]
8. Test multivariate Normality for the sample \(X_i \) using a \(\chi^2 \) test based on statistical distances.
9. Test multivariate Normality for the sample \((X_i)_i \).

Reports: Printed reports are due on Thursday, March 12, 2015.

Report preparation: Consider each report as a mini-paper. It should not be long, but it should provide a reader with all background information about the problem and methods you are using. Review the necessary theoretical material and describe the data. Do not insert the R-output in your report; instead, summarize it in tables or text in a nice readable form. If you still feel some parts of the R-output should be reported, put them in Appendix. Put your name on the title page.
1. **Generation of Multivariate Normal (MVN) rvs**

 1. Linear combination of iid standard Normal rvs
 2. \mathbf{R}-operator

2. **Generalized variance**

 1. Volume occupied by data points
 2. Linear dependence of data with zero generalized variance

3. **Properties of Multivariate Normal distribution**

 1. How to create a MVN rv with given variance matrix from iid standard Normal rvs
 2. How to create iid standard Normal rvs from a MVN rv with given variance matrix
 3. How to test for Multi-normality using the statistical distances

4. **How to write functions in \mathbf{R}**
Install libraries ...

```
library(Matrix)    # ... for matrix operations
library(car)       # ... for ellipse plots
library(stats)     # ... for statistical operations
library(MASS)      # ... for Multivariate Normal Distribution
library(graphics)  # ... for arrows
```

Multivariate Normal Sample ...

```
len<-5
N<-matrix(rnorm(len*2),len,2) # 5x2 iid N(0,1) rvs
A<-matrix(c(1,1,.5,1),2,2)    # 2x2 matrix of coefficients
X<-N%*%A                      # 5x2 linear combination
```

Multivariate Normal Sample ...

```
Sigma <- matrix(c(10,4,4,2),2,2)
mvrnorm(n=1,c(0,0),Sigma) # sample 1x2 with mean [0,0]
mvrnorm(n=5,c(0,0),Sigma) # sample 5x2 with mean [0,0]
mvrnorm(n=5,c(-100,100),Sigma) # sample 5x2 with mean [-100,100]
```

Correlation and covariance matrices

```
cor(N) # correlation matrix
cor(X) # correlation matrix
cov(N) # variance-covariance matrix
cov(X) # variance-covariance matrix
var(N) # the same as cov(N)
var(X) # the same as cov(X)
```
Generalized variance I: Volume occupied by data
This example illustrates that generalized variance is related to the volume occupied by data scatter

len <- 1000
N <- matrix(rnorm(len*2), len, 2) # 1000x2 iid N(0,1) rvs
A <- matrix(c(2,1,1,2,2,2), 2, 2) # 2x2 matrix of coefficients
X[,1] <- X[,1] + 5 # shift first column
N[,2] <- N[,2] + 5 # gen. var for N
X <- N %*% A # 1000x2 linear combination
X[,1] <- X[,1] + 5 # gen. var for X
e1 <- SA(X) # ellipses for X
N[,2] <- N[,2] + 5 # ellipses for N
det(cov(N)) # gen. var for N
det(cov(X)) # gen. var for X
e2 <- SA(N, add=T) # ellipses for N
det(cov(N))
det(cov(X))

e1 <- SA(X)
e2 <- SA(N, add=T)

Generalized variance II: Linearly dependent observations
This example shows how to find linearly dependent vectors in a data matrix with zero generalized variance

len <- 1000
N <- matrix(rnorm(len*2), len, 2) # 1000x2 iid N(0,1) rvs
A <- matrix(c(1,1,1,-1,2,3), 2, 3) # 2x3 matrix of coefficients
X <- N %*% A # 100x3 linear combination
det(cov(N)) # gen. var for N
det(cov(X)) # gen. var for X
Sigma <- cov(X) # covariance matrix
e <- eigen(Sigma) # eigenvalues, eigenvectors
eplot(X %*% e$vectors[,1], col='blue') # lin. comb. for max. eigenvalue
points(X %*% e$vectors[,3], col='red') # lin. comb. for 0-eigenvalue
e$vectors[,3]/e$vectors[2,3] # "good" form of linear dependence
Multivariate Normal (MVN) Distribution

This example shows how to
a) create Normal rvs with given variance matrix from iid N(0,1)
b) create iid N(0,1) from Normal rvs with given covariance matrix

Sigma <- matrix(c(10,4,4,2,2),2,2) # variance matrix
I <- diag(c(1,1)) # identity matrix
N <- mvrnorm(n=10000,c(0,0),I) # MVN with variance I
X <- mvrnorm(n=10000,c(0,0),Sigma) # MVN with variance Sigma

e <- e$eigen(Sigma) # spectral decomposition
P <- e$vectors # eigenvectors
L <- e$values # eigenvalues
Sm05 <- P%*%sqrt(diag(1/L))%*%t(P) # inverse square-root matrix
Sp05 <- P%*%sqrt(diag(L))%*%t(P) # square-root matrix

Z <- t(Sm05*X) # vector of iid N(0,1) rvs
X1 <- t(Sp05*N) # MVN rv with variance Sigma

var(Z)
var(X1)

Chi-square distribution of statistical distances

This example shows how to test for multi-normality
using the chi-square distribution

Sigma <- matrix(c(10,4,4,2,2),2,2) # variance matrix

(A) True Multivariate Normal
len=1000
X <- mvrnorm(n=len,c(0,0),Sigma) # 1000x2 MVN rv
S1 <- solve(cov(X)) # inverse of estimated covariance
d <- rep(0,len)
for (i in 1:len)
 d[i]<-t(X[i,])%*%S1%*%X[i,] # distance from i-th point

qqplot(qchisq(seq(1,len)/len,2),d) # qqplot with chi-sq quantiles
segments(0,0,10,10,col='red',lwd=2)
ggrid()

ks.test(d,"pchisq",2) # formal KS test
(B) Not Multivariate Normal

len=1000
X<-mvrnorm(n=len,c(0,0),Sigma) # 1000x2 MVN rv
X<-X^2

S1<-solve(cov(X)) # inverse of estimated covariance
d<-rep(0,len)
for (i in 1:len)
d[i]<-t(X[i,]%*%S1%*%X[i,]) # distance from i-th point

qqplot(qchisq(seq(1,len)/len,2),d) # qqplot with chi-sq quantiles
segments(0,0,10,10,col='red',lwd=2)
ggrid()

ks.test(d,"pchisq",2) # formal KS test

#===
Function that illustrates spectral decomposition
and statistical distance ellipses
#===
SA <- function(X,add=FALSE,data.plot=TRUE)
{
Vector of means
#===
n<-dim(X)[1]
ones<-matrix(rep(1,n),ncol=1)
mu<-as.vector(t(X) %*% ones / n)

Variance
#===
Sigma<-var(X)

e<-eigen(Sigma)
par(bg='yellow')
ellipse(mu,Sigma,3,add=add,xlim=range(X),ylim=range(X))
ellipse(mu,Sigma,2,add=TRUE)
ellipse(mu,Sigma,1,add=TRUE)
if (data.plot)
points(X[,1],X[,2],pch=20,col=4)
arrows(mu[1],mu[2],mu[1]+e$vectors[1,1]*sqrt(e$values[1]),
mu[2]+e$vectors[2,1]*sqrt(e$values[1]),length=.1,col='green',lwd=2)
arrows(mu[1],mu[2],mu[1]+e$vectors[1,2]*sqrt(e$values[2]),
mu[2]+e$vectors[2,2]*sqrt(e$values[2]),length=.1,col='green',lwd=2)
e
}