Problem 1
The rvs Y and X are related as
\[Y = 10 + 20X + \epsilon, \quad \epsilon \sim N(0,4^2). \]

a) Find the conditional distribution of Y given $X = x$.
b) Find the conditional expectation of Y given $X = 3$.
c) Find the conditional variance of Y given $X = 0$.

Problem 2
Let (X,Y) be a bivariate Normal random variable such that $Y \sim N(4,3^2)$, $X \sim N(5,2^2)$, and $\rho(X,Y) = 0.8$.

a) Find the conditional expectations $E(Y|Y = y)$, $E(X|X = x)$, $E(Y|X = x)$ and $E(X|Y = y)$.
b) Find the best mean-square constant forecast of Y, $\hat{Y} = c$.
c) Find the best mean-square forecast of Y by a function of X, $\hat{Y} = f(X)$.
d) Find the best mean-square forecast of X by a function of Y, $\hat{X} = f(Y)$.

Problem 3
Consider rvs Y and X with finite variances. We notice that when $\rho(X,Y) = \pm 1$, the rvs Y and X are (deterministically) linearly related, and the slopes of the lines $Y = \beta_0 + \beta_1 X$ and $X = \alpha_0 + \alpha_1 Y$ are reciprocal to each other:
\[\alpha_1 \beta_1 = 1. \]

True or False: If $\rho(X,Y) \neq \pm 1$, the slopes of the best mean-square forecast line $\hat{Y} = \beta_0 + \beta_1 X$ and $\hat{X} = \alpha_0 + \alpha_1 Y$ are reciprocal to each other?

Problem 4
Consider rvs Y and X with finite variances.

a) Formulate the necessary and sufficient conditions for the best mean-square forecast of Y by a linear function of X to be $\hat{Y} = X$.
b) It is known that the best mean-square linear forecast of Y by a (linear) function of X is $\hat{Y} = X$, and $\text{Var}(Y) = 4$. Find the range of possible values for the standard deviation of X, σ_X.

Problem 5
Suppose that X_t is a stationary time series with acf $\rho(h)$ and variance σ^2.

a) Show that the best mean-square forecast of X_{t+h} in the form
\[\hat{X}_{t+h} = aX_t + b \]
corresponds to $a = \rho(h)$, $b = E(X_0)(1 - \rho(h))$.
b) What is the mean-square error of this forecast?