Topic 3
(Chapters 17, 18)

Signal Timing Principles
and Terminologies
Signal Timing Terminologies

- **Basic signal terms**

 - **Cycle and cycle length**
 - **Interval**
 - Change interval (yellow)
 - Clearance interval (all-red)
 - Green interval
 - Red interval
 - **Phase** = Green + Yellow + All-red

 (*A signal phase is associated with a particular traffic movement*)
Traffic Movements

One-way Streets

Main Street

Side Street

N

Main Street

Side Street

EB

CEE 463/663 – Fall 2006
Traffic Movements

One-way Streets

Side Street

EB

Main Street

N
Traffic Movements

One-way Streets

Main Street

Side Street

EB

N

Main Street
Traffic Movements
One-way Streets

Main Street

Side Street

EB

N

CEE 463/663 – Fall 2006
Traffic Movements
One-way Streets

EB

Side Street

Main Street

N

CEE 463/663 – Fall 2006
Traffic Movements

One-way Streets

Side Street

Main Street

N

CEE 463/663 – Fall 2006
Two-Phase Operation

\[\phi_1 \quad \phi_2 \]
Traffic Movements
Full Intersection

Main Street

Side Street

SB

EB

WB

NB

N

CEE 463/663 – Fall 2006
Controlled Movements

Main Street

Side Street

SB

EB

NB

WB

Main Street

N
Phasing Sequence

- **Left-turn Treatment/Control**
 - Permitted (no phase)
 - Protected
 - Protected/Permitted

- **Left-turn Sequence**
 - Dual LT Leading (preferred)
 - Dual LT Lagging
 - Split
 - Lead/Lag
Guidelines on Left-turn Controls

Permitted when any of the following satisfies

- $v_{LT} \leq 2 \text{ per cycle}$
- $v_{LT} < 200 \text{ vph}$
- Cross product: $v_{LT} \times \left(\frac{v_o}{N_o} \right) < 50,000$

Protected only

- Two or more left-turn lanes
- Speed limit $\geq 45 \text{ mph}$
- $v_{LT} > 320 \text{ vph}$, or $v_o > 1,100 \text{ vph}$
- Three or more opposing through lanes
- P/P has more than 7 accidents during 3 years
Phasing Sequence
Left-turn Leading

\[\begin{array}{c}
\phi_1 & \phi_2 & \phi_3 \\
\phi_5 & \phi_6 & \phi_7
\end{array} \]

Ring 1

\[\begin{array}{c}
\phi_1 & \phi_2 & \phi_4 \\
\phi_8
\end{array} \]

Ring 2

Barrier

CEE 463/663 – Fall 2006
Phasing Sequence

Lead-Lag

\[\phi_1 \quad \phi_2 \quad \phi_3 \quad \phi_4 \quad \phi_5 \quad \phi_6 \quad \phi_7 \quad \phi_8 \]

Barriers

Ring 1

Ring 2
Phasing Sequence

Lagging Left-Turn

\[\phi_2 \rightarrow \phi_1 \rightarrow \phi_6 \rightarrow \phi_5 \rightarrow \phi_3 \rightarrow \phi_7 \rightarrow \phi_8 \rightarrow \phi_4 \]
Phasing Sequence

Split

 Barrier

Ring 1

φ2
φ1
φ3
φ4
φ5
φ6
φ7
φ8

Ring 2

φ5
φ6
φ5
φ6
φ1
φ2
φ1
φ2
Right-Turn Phase

- SB
 - φ8 φ3

- EB
 - φ1
 - φ6

- NB
 - φ7
 - φ4

- WB
 - φ2
 - φ5

- φ4+ φ5

N
Free Right-Turn

SB
φ8 φ3

EB
φ1 φ6

NB
φ7 φ4

WB
φ2 φ5

N
Right-Turn Phase

- **Right-turn Treatment**
 - Permitted (same with adjacent through)
 - Right-turn-on-red (RTOR)
 - No RTOR
 - Protected
 - Right-turn arrow display
 - Overlap phase (adjacent through phase + right-side cross street left-turn phase)
 - Free (channelized)
Determine a feasible signal phase and control, draw phase, ring, barrier diagram
Can the westbound right-turn operate with overlap phase(s)
How are the pedestrian phases handled?
Pedestrian Phase

- Pedestrian phase (WALK + FDW) is usually concurrent with the through movement phase.
- WALK and FDW normally show only when pedestrian crossing button is pushed.
Pedestrian Phase

- **WALK** time is usually between 4~7 sec
- **FDW** is also called the pedestrian clearance time, which is to allow pedestrians entering the crosswalk to safely cross

\[G \geq WALK + FDW \]

\[FDW = L/S_p \]
Pedestrian Issues

- Pedestrian timing > vehicle timing (crossing major street)
- Significant impact with split phasing
- Pedestrian crossing is a random event (not every cycle has peds)
- Coordination and timing issue
Pedestrian Crossing under Split Phasing

- When there are pedestrians on both crosswalks, the side street will consume \(2 \times t_p\) seconds in a cycle, where \(t_p\) is the phase time needed to serve a pedestrian crossing.

- Strategies to minimize pedestrian crossing effect (paper by Tian et al., TRR 1748, pp. 46-54, 2001.)
 - Eliminate one-side crossing
 - Allow crossing both sides (permitted left-turn)
 - Two-stage crossing
 - Scramble pedestrian phase
Determine phase(s) that serve pedestrians on the two crosswalks.
Change and Clearance Intervals

- **Change interval (yellow)**
 - can safely stop when green ends and yellow starts
 - or can enter the intersection at the end of yellow
 - about 3~4 seconds

Stopping Distance

Distance during Perception/Reaction

Yellow Starts

Stopping Distance
Change and Clearance Intervals

- **Change interval (yellow) – ITE**

 \[y = t + \frac{1.47S_{85}}{2d + 64.4 \times 0.01G} \]

- **Clearance Interval (all-red)**

 \[ar = \frac{w + L}{1.47S_{15}} \]
Table 7.2.1 Uniform Acceleration Formulas

<table>
<thead>
<tr>
<th>to find</th>
<th>given these</th>
<th>use this equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>t, v_0, v</td>
<td>$a = \frac{v - v_0}{t}$</td>
</tr>
<tr>
<td>a</td>
<td>t, v_0, s</td>
<td>$a = \frac{2s - 2v_0 t}{t^2}$</td>
</tr>
<tr>
<td>a</td>
<td>v_0, v, s</td>
<td>$a = \frac{v^2 - v_0^2}{2s}$</td>
</tr>
<tr>
<td>s</td>
<td>t, a, v_0</td>
<td>$s = v_0 t + \frac{1}{2} at^2$</td>
</tr>
<tr>
<td>s</td>
<td>a, v_0, v</td>
<td>$s = \frac{v^2 - v_0^2}{2a}$</td>
</tr>
<tr>
<td>s</td>
<td>t, v_0, v</td>
<td>$s = \frac{1}{2} t (v_0 + v)$</td>
</tr>
<tr>
<td>t</td>
<td>a, v_0, v</td>
<td>$t = \frac{v - v_0}{a}$</td>
</tr>
<tr>
<td>t</td>
<td>a, v_0, s</td>
<td>$t = \sqrt{\frac{v_0^2 + 2as - v_0}{a}}$</td>
</tr>
<tr>
<td>t</td>
<td>v_0, v, s</td>
<td>$t = \frac{2s}{v_0 + v}$</td>
</tr>
<tr>
<td>v_0</td>
<td>t, a, v</td>
<td>$v_0 = v - at$</td>
</tr>
<tr>
<td>v_0</td>
<td>t, a, s</td>
<td>$v_0 = \frac{s}{t} - \frac{1}{2} at$</td>
</tr>
<tr>
<td>v_0</td>
<td>a, v, s</td>
<td>$v_0 = \sqrt{v^2 - 2as}$</td>
</tr>
<tr>
<td>v</td>
<td>t, a, v_0</td>
<td>$v = v_0 + at$</td>
</tr>
<tr>
<td>v</td>
<td>a, v_0, s</td>
<td>$v = \sqrt{v_0^2 + 2as}$</td>
</tr>
</tbody>
</table>

The table can be used for rotational problems by substituting α, ω, and θ for a, v, and s, respectively.
Dilemma zone is a distance area when a vehicle can neither safely stop nor safely pass the intersection.
Example

Assume the 85th percentile speed is 57 mph, and the 15th percentile speed is 43 mph.

(a) Calculate the yellow change interval, clearance interval

(b) If a vehicle is traveling at 50 mph, determine the dilemma zone if any

\begin{align*}
&66 \text{ ft} \\
&13 \text{ ft} \\
&L = 20 \text{ ft}
\end{align*}
Clearance Intervals and Lost Times

- Clearance interval (all-red)
 - vehicles entering in yellow can clear the intersection
 - about 1.0~2.5 sec

- Lost times
 - time that cannot be effectively used by vehicles
 - start-up lost time, l_1, 2 sec (default in HCM)
 - use of end of green, e, 2 sec (default in HCM)

\[
t_L = l_1 + y + AR - e
\]
Saturation Headway and Saturation Flow Rate

\[s = \frac{3600}{h} \]
Effective Green and Capacity

- Effective green of \(\Phi_i, g_i \)
 \[
g_i = G_i + y_i + (ar)_i - t_{Li}
 \]

- Phase capacity, \(c_i \)
 \[
c_i = s_i \times \frac{g_i}{C}
 \]

- Volume-to-capacity ratio, \(x_i \)
 \[
x_i = \frac{v_i}{c_i} = \frac{v_i}{s_i \left(\frac{g_i}{C} \right)} = \frac{v_i}{s_i} \times \frac{C}{g_i}
 \]
Example

Given the following:

- \(C = 60 \text{ s} \)
- \(G = 27 \text{ s} \)
- \(y = 2.5 \text{ s} \)
- \(ar = 0.5 \text{ s} \)
- \(h = 2.4 \text{ s} \)
- Start up lost time \(l_1 = 2.0 \text{ s} \), Clearance lost time \(l_2 = 1.0 \text{ s} \)

What is the capacity for an approach with two lanes of identical traffic flow characteristics?
Required Green and Phase Time

- Required effective green, g_i to achieve degree of saturation, x_i

$$g_i = \frac{v_i}{s_i} \times \frac{C}{x_i} = y_i \frac{C}{x_i}$$

- Minimum effective green, g_i

$$g_i = y_i C$$

- Minimum phase, ϕ_i

$$\phi_i = g_i + \ell_i = y_i C + \ell_i$$
Critical Phases

- **Critical phases**: conflicting phases that require the most time

- **Possible critical phases**
 - $\phi_1, \phi_2, \phi_3, \phi_4$
 - $\phi_1, \phi_2, \phi_7, \phi_8$
 - $\phi_5, \phi_6, \phi_3, \phi_4$
 - $\phi_5, \phi_6, \phi_7, \phi_8$
Critical Phases

- For a 8-phase signal, there are 4 critical phases

\[\phi_{c1} + \phi_{c2} + \phi_{c3} + \phi_{c4} = C \]

\[g_{c1} + g_{c2} + g_{c3} + g_{c4} = C - (l_{c1} + l_{c2} + l_{c3} + l_{c4}) = C - L \]

\[
\sum_{i=1}^{4} g_i = \sum_{i=1}^{4} y_i \frac{C}{x_i} = \frac{C}{x_i} \sum_{i=1}^{4} y_i = \frac{C}{x_i} Y_{CI} = C - L
\]

\[Y_{CI} = \frac{C-L}{C} X_{CI} \]

\[X_{CI} = \frac{C}{(C-L)} Y_{CI} \]

\[C = \frac{LX_{CI}}{X_{CI}-Y_{CI}} \]

\[C_{\text{min}} = \frac{L}{1-Y_{CI}} \]

\[C_{o} = \frac{1.5L+5}{1-Y_{CI}} \]
Determine signal timing given the following data. Assume 8-phase, dual-ring, and $l = 4.0$ sec/phase

<table>
<thead>
<tr>
<th>Φ_i</th>
<th>Direction</th>
<th>v_i, vph</th>
<th>s_i, vph</th>
<th>y_i</th>
<th>Sum of Ring y_i</th>
<th>g_i</th>
<th>Min. Phase, Φ</th>
<th>Phase, Φ</th>
<th>x_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WBL</td>
<td>120</td>
<td>1710</td>
<td>0.070</td>
<td></td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EBT</td>
<td>616</td>
<td>3600</td>
<td>0.171</td>
<td></td>
<td></td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EBL</td>
<td>147</td>
<td>1710</td>
<td>0.086</td>
<td></td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>WBT</td>
<td>512</td>
<td>3600</td>
<td>0.142</td>
<td></td>
<td></td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NBL</td>
<td>78</td>
<td>1710</td>
<td>0.046</td>
<td></td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SBT</td>
<td>318</td>
<td>3600</td>
<td>0.088</td>
<td></td>
<td></td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SBL</td>
<td>174</td>
<td>1710</td>
<td>0.102</td>
<td></td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NBT</td>
<td>412</td>
<td>3600</td>
<td>0.114</td>
<td></td>
<td></td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Φ_i</th>
<th>Direction</th>
<th>v_i, vph</th>
<th>s_i, vph</th>
<th>y_i</th>
<th>Sum of Ring y_i</th>
<th>g_i</th>
<th>Min. Phase, Φ</th>
<th>Phase, Φ</th>
<th>x_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WBL</td>
<td>120</td>
<td>1710</td>
<td>0.070</td>
<td></td>
<td>6.0</td>
<td>10.0</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>2</td>
<td>EBT</td>
<td>616</td>
<td>3600</td>
<td>0.171</td>
<td>0.241</td>
<td>14.0</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EBL</td>
<td>147</td>
<td>1710</td>
<td>0.086</td>
<td></td>
<td>8.0</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>WBT</td>
<td>512</td>
<td>3600</td>
<td>0.142</td>
<td>0.228</td>
<td>12.0</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NBL</td>
<td>78</td>
<td>1710</td>
<td>0.046</td>
<td></td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SBT</td>
<td>318</td>
<td>3600</td>
<td>0.088</td>
<td>0.134</td>
<td></td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SBL</td>
<td>174</td>
<td>1710</td>
<td>0.102</td>
<td></td>
<td>8.0</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NBT</td>
<td>412</td>
<td>3600</td>
<td>0.114</td>
<td>0.216</td>
<td>9.0</td>
<td>15.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>