Transportation Systems Management

CEE 495/771
Spring 2006
Zong Tian
Lecture 1
(Chapters 17, 18)

Signal Timing Principles
and Terminologies
Intersection Control

- Hierarchy of intersection control
 - Unsignalized
 - Uncontrolled
 - Yield
 - Stop controlled
 - TWSC
 - AWSC
 - Roundabout
 - Signalized
Signal Timing Terminologies

- Basic signal timing terms
 - Cycle and cycle length
 - Interval
 - Change interval (yellow)
 - Clearance interval (all-red)
 - Green interval
 - Red interval
 - Phase = Green + Yellow + All-red
 (*A signal phase is associated with a particular traffic movement*)
Traffic Movements

One-way Streets

Main Street

Side Street

N

EB

Main Street

CEE 495/771 – Spring 2006
Traffic Movements

One-way Streets

Main Street

Side Street

N

EB

Main Street

CEE 495/771 – Spring 2006
Traffic Movements
One-way Streets

Main Street

Side Street

EB

N

Main Street

CEE 495/771 – Spring 2006
Traffic Movements

One-way Streets

Main Street

Side Street

EB

Main Street

N

CEE 495/771 – Spring 2006
Traffic Movements

One-way Streets

Main Street

Side Street

EB

Main Street

N

CEE 495/771 – Spring 2006
Two-Phase Operation

\[\phi_1 \quad \phi_2 \]
Traffic Movements
Full Intersection

Main Street

Side Street

SB

EB

NB

WB

N
Controlled Movements

Main Street

Side Street

SB

EB

NB

WB

N
Conflicting Movements

Main Street

Side Street
SB
WB

EB
NB

N

CEE 495/771 – Spring 2006
Phase, Ring and Barrier Structure

Barrier

Ring 1

Ring 2

Main Street

Side Street

Cycle Length

N

CEE 495/771 – Spring 2006
Phasing Sequence

- **Left-turn Treatment**
 - Permitted (no phase)
 - Protected
 - Protected/Permitted

- **Left-turn Sequence**
 - Dual LT Leading (preferred)
 - Dual LT Lagging
 - Split
 - Lead/Lag
Phasing Sequence

Left-turn Leading

\[\phi_1 \quad \phi_2 \quad \phi_3 \quad \phi_4 \\
\phi_5 \quad \phi_6 \quad \phi_7 \quad \phi_8 \]

Similarly for Ring 2:

\[\phi_1 \quad \phi_2 \quad \phi_2 \\
\phi_5 \quad \phi_5 \quad \phi_6 \]

\[\phi_1 \quad \phi_1 \quad \phi_2 \\
\phi_5 \quad \phi_6 \quad \phi_6 \]
Phasing Sequence

Lead-Lag

\[\phi_2 \leftrightarrow \phi_5 \quad \phi_1 \rightarrow \phi_6 \quad \phi_3 \rightarrow \phi_7 \quad \phi_4 \rightarrow \phi_8 \]

Ring 1

Ring 2

CEE 495/771 – Spring 2006
Phasing Sequence

Lagging Left-Turn

\[\phi_2 \rightarrow \phi_1 \rightarrow \phi_6 \rightarrow \phi_5 \rightarrow \phi_3 \rightarrow \phi_7 \rightarrow \phi_4 \rightarrow \phi_8 \]
Right-Turn Phase

SB
φ8 φ3

EB
φ1 φ6

NB
φ7 φ4

WB
φ2 φ5

φ4+ φ5

N
Right-Turn Phase

- **Right-turn Treatment**
 - Permitted (same with adjacent through)
 - Right-turn-on-red (RTOR)
 - No RTOR
 - Protected
 - Right-turn arrow display
 - Overlap phase (adjacent through phase + right-side cross street left-turn phase)
Pedestrian Phase

- Pedestrian phase (WALK + FDW) is usually concurrent with the through movement phase.
- WALK and FDW normally show only when pedestrian crossing button is pushed.
Pedestrian Phase

- **WALK** time is usually between 5~7 sec
- **FDW** is also called the pedestrian clearance time, which is to allow pedestrians entering the crosswalk to safely cross

\[G \geq WALK + FDW \]
Determine the appropriate signal phasing and control, assuming left-turn is protected wherever exclusive left-turn lanes are provided.
Questions

- Name the types of left-turn signal control
- Name the possible phasing sequences for left-turns
- For a full intersection with 8 phases, does the cycle length equal to the sum of all 8 phases? Why?
- What is the purpose of pedestrian clearance time (i.e., FDW)? How is it related to a vehicle phase?
Change and Clearance Intervals

Change interval (yellow)
- can safely stop when green ends and yellow starts
- or can enter the intersection at the end of yellow
- about 3~4 seconds
Change and Clearance Intervals

- **Change interval (yellow) – ITE**

 \[y = t + \frac{1.47S_{85}}{2d + 64.4 \times 0.01G} \]

- **Clearance Interval (all-red)**

 \[ar = \frac{w + L}{1.47S_{15}} \]
Clearance Intervals and Lost Times

- **Clearance interval (all-red)**
 - vehicles entering in yellow can clear the intersection
 - about 1.0~2.5 sec

- **Lost times**
 - time that cannot be effectively used by vehicles
 - start-up lost time, \(l_1 \), 2 sec (default in HCM)
 - use of end of green, \(e \), 2 sec (default in HCM)

\[
 t_L = l_1 + y + AR - e
\]
Saturation Headway and Saturation Flow Rate

\[s = \frac{3600}{h} \]
Effective Green and Capacity

- Effective green of Φ_i, g_i

\[g_i = G_i + y_i + (ar)_i - t_{Li} \]

- Phase capacity, c_i

\[c_i = s_i \times \frac{g_i}{C} \]

- Volume-to-capacity ratio, x_i

\[x_i = \frac{v_i}{c_i} = \frac{v_i}{s_i \left(\frac{g_i}{C} \right)} = \frac{v_i}{s_i} \times \frac{C}{g_i} \]
Example

Given the following:

- C = 60 s
- G = 27 s
- y = 2.5 s
- ar = 0.5 s
- h = 2.4 s
- Start up lost time $l_1 = 2.0$ s, Clearance lost time $l_2 = 1.0$ s

What is the capacity for an approach with two lanes of identical traffic flow characteristics?
Required Green and Phase Time

- Required effective green, g_i to achieve degree of saturation, x_i

$$g_i = \frac{v_i}{s_i} \times \frac{C}{x_i} = y_i \frac{C}{x_i}$$

- Minimum effective green, g_i

$$g_i = y_i C$$

- Minimum phase, Φ_i

$$\phi_i = g_i + \ell_i = y_i C + \ell_i$$
Critical Phases

- **Critical phases**: conflicting phases that require the most time

- **Possible critical phases**
 - \(\varphi_1, \varphi_2, \varphi_3, \varphi_4 \)
 - \(\varphi_1, \varphi_2, \varphi_7, \varphi_8 \)
 - \(\varphi_5, \varphi_6, \varphi_3, \varphi_4 \)
 - \(\varphi_5, \varphi_6, \varphi_7, \varphi_8 \)
Critical Phases

- For a 8-phase signal, there are 4 critical phases

\[\phi_{c1} + \phi_{c2} + \phi_{c3} + \phi_{c4} = C \]

\[g_{c1} + g_{c2} + g_{c3} + g_{c4} = C - (l_{c1} + l_{c2} + l_{c3} + l_{c4}) = C - L \]

\[\sum_{i=1}^{4} g_i = \sum_{i=1}^{4} y_i \frac{C}{x_i} = C - L \]

\[Y_{cl} = \frac{C-L}{C} X_{cl} \]

\[X_{cl} = \frac{C}{C-L} Y_{cl} \]

\[C = \frac{LX_{cl}}{X_{cl}-Y_{cl}} \]

\[C = \frac{1.5L+5}{1-Y_{cl}} \]

\[g_i = y_i \frac{C}{X_{cl}} = y_i \frac{C-L}{Y_{cl}} = \frac{y_i}{Y_{cl}} (C - L) \]

Webster’s Equation

CEE 495/771 – Spring 2006
Example

Determine signal timing given the following data. Assume 8-phase, dual-ring, and $\ell = 4.0$ sec/phase

<table>
<thead>
<tr>
<th>Φ_i</th>
<th>Direction</th>
<th>v_i, vph</th>
<th>s_i, vph</th>
<th>y_i</th>
<th>Sum of Ring y_i</th>
<th>g_i</th>
<th>Min. Phase, Φ</th>
<th>Phase, Φ</th>
<th>x_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WBL</td>
<td>120</td>
<td>1710</td>
<td>0.070</td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EBT</td>
<td>616</td>
<td>3600</td>
<td>0.171</td>
<td></td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EBL</td>
<td>147</td>
<td>1710</td>
<td>0.086</td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>WBT</td>
<td>512</td>
<td>3600</td>
<td>0.142</td>
<td></td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NBL</td>
<td>78</td>
<td>1710</td>
<td>0.046</td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SBT</td>
<td>318</td>
<td>3600</td>
<td>0.088</td>
<td></td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SBL</td>
<td>174</td>
<td>1710</td>
<td>0.102</td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NBT</td>
<td>412</td>
<td>3600</td>
<td>0.114</td>
<td></td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>