Lecture 4
(Chapter 9)

Speed, Travel Time
and Delay Studies
Speed Studies

- Some speed related terms
 - TMS and SMS (discussed previously)
 \[\bar{S} = \frac{\sum n_i S_i}{N} \]
 - Standard deviation
 \[\sigma = \sqrt{\frac{\sum (S_i - \bar{S})^2}{N-1}} = \sqrt{\frac{\sum S_i^2 - N\bar{S}^2}{N-1}} \]
 - 85th percentile speed
 - Median speed
 - Pace
Travel Time Studies

- Evaluate new signal timing improvement
- Travel time field techniques
 - Floating car
 - Maximum car
 - Average car
- GPS technology

Delay Studies

- Delay: the most commonly used performance measures
- Types of Intersection Delays
 - Stopped delay
 - Total delay (control delay)
 - Time in queue delay

Delay Studies

- Delay: the most commonly used performance measures
- Types of Intersection Delays
 - Stopped delay
 - Total delay (control delay)
 - Time in queue delay
Field Delay Studies

- Direct measurement of time in queue delay (path trace)
 - \(\text{delay} = (\text{time to exit stop line}) - (\text{time to join queue}) \)

- Queue sample
 \[
 T_Q = \left(\frac{\sum V_{V_i}}{V_T} \right)
 \]

Field Delay Studies - Example

<table>
<thead>
<tr>
<th>Clock Time</th>
<th>Number of vehicles in queue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><10 sec</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>4</td>
</tr>
<tr>
<td>5:01 PM</td>
<td>3</td>
</tr>
<tr>
<td>5:02 PM</td>
<td>3</td>
</tr>
<tr>
<td>5:03 PM</td>
<td>3</td>
</tr>
<tr>
<td>5:04 PM</td>
<td>3</td>
</tr>
<tr>
<td>5:05 PM</td>
<td>3</td>
</tr>
<tr>
<td>5:06 PM</td>
<td>3</td>
</tr>
<tr>
<td>5:07 PM</td>
<td>3</td>
</tr>
</tbody>
</table>

Total vehicle count going through the intersection is 120 vehs
Field Delay Studies

- Adjustment to account for deceleration and acceleration
 - 0.9 adjustment for error
 \[T_v = \left(\sum_i \frac{V_i}{V_T} \right) \times 0.9 \]
 - Correction factor (CF) in Table 9.6, which would need FFS and \(V_{SLC} \)
 \[V_{SLC} = \frac{V_{STOP}}{N_C N_L} \]

Field Delay Studies

- Final control delay
 \[d = T_Q + (FVS \times CF) \]
 \[FVS = \frac{V_{STOP}}{V_T} \]

Volume and Delay Data Collection Devices