Due on Tuesday October 4 at the beginning of lecture.

1. 2.7.11

2. 2.7.15

3. 3.2.4

4. Consider the experiment of rolling six six-sided dice. The sample space S is all length-six sequences made up of integers 1 to 6, with replacement. Find (a) the probability of all dice yielding the same number, and (b) the probability that all the numbers are distinct.

5. Let Y_i be a random variable (for $i = 1, 2, 3, 4$) given by the following functions of the outcomes in the experiment described above (in Problem 4). For each of these new random variables Y_i given below, describe (1) the new sample space associated with Y_i (i.e., S_{Y_i}) and (2) the probability function $P(Y_i = k)$ for appropriate values of k.

 (a) Y_1 is the number of even integers in the sequence.

 (b) (461 only) Y_2 is the number of integers greater than 3 in the sequence.

 (c) Y_3 is the number of 2s in the sequence.

 (d) (661 only) Y_4 is the indicator function that tests if the sequence sum is less than 8.

6. 3.2.11

7. 3.2.22

8. 3.2.26

9. 3.2.34 (461 only)

 3.2.35 (661 only) Note: The odd questions are answered in the back of the text, so points will be awarded for the justification/proof, not just the formula!