1. Find \bar{a}, the inverse of a modulo m, when
 (a) $a = 3$ and $m = 8$
 (b) $a = 7$ and $m = 10$
 (c) $a = 12$ and $m = 19$.

2. What is the remainder when 2015^{2016} is divided by 11?

3. The converse of Fermat’s Little Theorem is not true, i.e. when $a^{m-1} \equiv 1 \pmod{m}$, we cannot necessarily conclude that m is a prime. Complete the following steps to construct a counterexample.
 (a) Show that 341 is not a prime.
 (b) Show that $2^{10} \equiv 1 \pmod{341}$. (*Hint: compute 2^{10} directly. Euler’s theorem would not help you here.*)
 (c) Show that $2^{340} \equiv 1 \pmod{341}$.