Chapter 2

\[\text{§2.1 Euclid's Division Lemma} \]

There exist integers \(m \) and \(r \) such that

\[n = m \beta + r, \quad 0 \leq r < \beta \]

Proof. Consider multiples of \(\beta \):

\[0, \beta, 2\beta, \ldots \]

We can find \(m \) such that

\[m\beta \leq n < (m+1)\beta. \]

Let \(r = n - m\beta \).

We get the desired conclusion.

We observe that \(r < \beta \).
§ 2.2 Divisibility

Def. If \(a \) and \(b \) (\(b \neq 0 \)) are integers, we say \(b \) divides \(a \) (or \(b \) is a divisor of \(a \) or \(a \) is divisible by \(b \)) if \(\frac{a}{b} \) is an integer.

We will write \(b | a \) to indicate \(b \) divides \(a \).

\[b + a \quad \text{or} \quad b \text{ does not divide } a \]

Ex. \(5 | 15 \), \(6 \nmid 15 \).

Ex. If \(a \) is an integer, then \(1 | a \) and \(-1 | a \).

Ex. If \(a \neq 0 \) is an integer, then \(a | 0 \).

Ex. If \(a|n \) and \(a|m \), \(c, d \) are integers,
then \(a | cn + dm \).
If \(d \) divides both \(a \) and \(b \), then \(d \) is called a common divisor of \(a \) and \(b \).

Def. \(d \) is called the greatest common divisor of \(a \) and \(b \).

(i) \(d > 0 \).

(ii) \(d \) is a common divisor of \(a \) and \(b \).

(iii) Each common divisor of \(a \) and \(b \) is also a divisor of \(d \).

In this case, we write \(d = \gcd(a, b) \).

Thm 2.2 If \(a \) and \(b \) are integers, not both zero, then \(\gcd(a, b) \) exists and is unique.

Ex. Find \(\gcd(34, 527) \).

(c.m (a, b) = least common multiple of \(a, b \))

Question: Prove that \(\gcd(a, b) \cdot \operatorname{c.m}(a, b) = ab \).
The Fundamental Theorem of Arithmetic

Thm 2.3 For each integer \(n > 1 \), there exists a prime \(p_1 < p_2 < \ldots < p_k \) and \(x_1, x_2, \ldots, x_k \), such that

\[
n = p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k},
\]

this factorization is unique.

Thm 2.4 If \(d = \gcd(a, b) \), then there exist integers \(x \) and \(y \) such that

\[
ax + by = d.
\]

Cor 2.5 In order that there exist integers \(x \) and \(y \) satisfying the equation \(ax + by = c \), it is necessary and sufficient that \(d \mid c \), where \(d = \gcd(a, b) \).

Def 2.6 If \(\gcd(a, b) = 1 \), then \(a, b \) are said to be relatively prime.

Thm 2.6 If \(a, b, c \) are integers where \(a \) and \(c \) are coprime, and \(\frac{c}{\gcd(a, b)} = \frac{a}{b} \) then \(\frac{b}{c} \).

Ex. \(\gcd(a, b) = d \) then \(\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1 \).