Chapter 4. Fundamentals of Congruences

§ 4.1. Basic Properties of Congruences

Def. If \(\equiv 0 \), we say that \(a \equiv b \pmod{2} \)
if provided that \(\frac{a-b}{2} \) is an integer (or \(2 \mid a-b \)).

Ex. 1 \(7 \equiv 3 \pmod{4} \)
\(17 \equiv 12 \pmod{5} \)
\(7 \equiv 3 \pmod{8} \)
\(100 \equiv -40 \pmod{20} \)
\(14 \equiv -1 \pmod{15} \)

Ex. 2 If \(a \equiv b \), then for any \(2 \), \(a \equiv b \pmod{2} \).
But \(a \equiv b \pmod{2} \) does not necessarily imply that \(a = b \).

Thm. 4.1 If \(a, b, c, \Theta, \Omega \) are integers (\(\equiv 0 \)), then
\(a \equiv a \pmod{2} \) — “reflective”
\(a \equiv b \pmod{2} \iff b \equiv a \pmod{2} \) — “symmetric”
If \(a \equiv b \pmod{2} \), \(b \equiv c \pmod{2} \), then
\(a \equiv c \pmod{2} \) — “transitive”

Proof is easy (fill in by yourself)
Thm 4.2. Suppose \(a \equiv a' \pmod{2} \), \(b \equiv b' \pmod{2} \)
then \(a \pm b \equiv a' \pm b' \pmod{2} \)
\(a \cdot b \equiv a' \cdot b' \pmod{2} \)

Ex 3. \(19 \equiv 11 \pmod{4} \) and \(6 \equiv 2 \pmod{4} \)

So \(25 \equiv 13 \pmod{4} \) (add)
\(13 \equiv 9 \pmod{4} \) (subtract)
\(9 \cdot 14 \equiv 22 \pmod{4} \) (multiply)

However, division is not always OK.

Ex. 4. \(15 \equiv 5 \pmod{10} \)
but \(3 \not\equiv 1 \pmod{10} \)

Thm 4.3. (Cancellation law) If \(a \cdot b \equiv a' \cdot b' \pmod{2} \)
and \((b, 2) = 1 \), then \(a \equiv a' \pmod{2} \)

Ex. 5. \(6 \equiv 2 \pmod{2} \) and \(\gcd(3, 2) = 1 \),

So \(2 \equiv 4 \pmod{2} \) by Thm 4.3.

but we cannot conclude that \(3 \equiv 6 \pmod{2} \) (why?)
§ 4.2 Residue Systems

Def: If h, j integers and \(h \equiv j \pmod{m} \) then we say
j is a residue of h modulo m.

Def: The set of integers \(\{ r_0, r_1, \ldots, r_s \} \) is called a
complete residue system modulo m if
(i) \(r_i \not\equiv r_j \pmod{m} \) for any \(i \neq j \),
(ii) for every integer \(n \) there corresponds an \(r_i \) such that
\(n \equiv r_i \pmod{m} \).

Thm 4.4. If \(\{ r_0, r_1, \ldots, r_s \} \) is a complete residue system modulo m, then \(s = m \).

Corl. \(\{ 0, 1, 2, \ldots, m-1 \} \) is a complete residue system mod m.

Ex: \(\{ 0, 1, 2, 3 \} \), \(\{ 1, 3, 2, 8 \} \), \(\{ -1, -2, 0, 1 \} \)
\(\{ 10, 11, 12, 13 \} \) are all complete residue system mod 4.

Ex. Find an integer \(n \) that satisfies the congruence
\[325n \equiv 11 \pmod{3} \]
Since \(325 \equiv 1 \pmod{3} \) \(11 \equiv 2 \pmod{3} \)
so \(n \equiv 2 \pmod{3} \).
Def. The set of integers \(\{ r_1, r_2, \ldots, r_s \} \) is called a reduced residue system modulo \(m \) if

(i) \(\gcd (r_i, m) = 1 \) for each \(r_i \);

(ii) \(r_i \not\equiv r_j \pmod{m} \) whenever \(i \neq j \);

(iii) for each integer \(n \) relatively prime to \(m \) there corresponds an \(r_i \) such that \(n \equiv r_i \pmod{m} \).

Ex. \(\{ 0, 1, 2, 3, 4, 5 \} \) is a complete residue system modulo 6.
\(\{ 1, 5 \} \) is a reduced residue system modulo 6.

Ex. \(p \) is a prime; then \(\{ 0, 1, 2, \ldots, p-1 \} \) is a complete residue system modulo \(p \). The only element in this set not coprime to \(p \) is 0; hence \(\{ 1, 2, \ldots, p-1 \} \) is a reduced residue system modulo \(p \).

Def. The function \(\varphi(m) \) (called Euler's \(\varphi \)-function) shall denote the number of positive integers less than or equal to \(m \) that are relatively prime to \(m \).

Thm 4.5. If \(\{ r_1, \ldots, r_s \} \) form a reduced residue system modulo \(m \), then \(S = \varphi(m) \).
Ex. \(m = 4, \ \{1, 3\} \quad \varphi(4) = 2 \)

\(m = 5, \ \{1, 2, 3, 4\} \quad \varphi(5) = 4 \)

\(m = 6, \ \{1, 5\} \quad \varphi(6) = 2 \)

\(m = 8, \ \{1, 3, 5, 7\} \quad \varphi(8) = 4 \)

\(m = 9, \ \{1, 2, 4, 5, 7, 8\} \quad \varphi(9) = 6 \)

\(m = 10, \ \{1, 3, 7, 9\} \quad \varphi(10) = 4 \)

\(m = 11, \ \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \quad \varphi(11) = 10 \)

Do you see any obvious pattern for \(\varphi(m) \)?

We will study the exact formula for \(\varphi(m) \) in Chap 6.

\[\text{Ex.} \]

Find integers such that

\[7x \equiv 6 \pmod{5} \quad \cdots \ (\times) \]

Since \(7 \equiv 2 \pmod{5} \) and \(6 \equiv 1 \pmod{5} \),

we may instead write \((\times)\) as

\[2x \equiv 1 \pmod{5} \quad \cdots \ (\ast\ast) \]

Now since \(2 \times 3 \equiv 1 \pmod{5} \),

we multiply by 3 (which sort of plays the role of \(\frac{1}{2} \)

in the modulo 5 world) on both sides of \((\ast\ast)\)

\[6x \equiv 3 \pmod{5} \]

Hence \(x \equiv 3 \pmod{5} \).