Ex. (i) $22 = 2 	imes 11$
\[\phi(22) = 22 \times \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{11}\right) = 22 \times \frac{1}{2} \times \frac{10}{11} = 10 \]

(iii) $120 = 2^3 \times 3 \times 5$
\[\phi(120) = 120 \times \frac{1}{2} \times \frac{2}{3} \times \frac{4}{5} = 32 \]

(iii) $1024 = 2^{10}$
\[\phi(1024) = 2^{10} \times \frac{1}{2} = 2^9 = 512 \]

Chap 7 Primitive Roots

Ex. 1. $\phi(16) = 4$, $\{1, 3, 7, 9\}$ is a reducible syst. mod 10.

We also note that
\[\{3, 3^2, 3^3, 3^4\} \] are reducible syst. mod 10.
\[\{7, 7^2, 7^3, 7^4\} \]

Def. If h is the smallest positive integer such that $a^h \equiv 1 \pmod{m}$.

We say that a belongs to exponent h mod m.

Thm. 7.1 In order for that $a^b \equiv 1 \pmod{m}$ for some b, it is necessary and sufficient that $\gcd(a, m) = 1$.
Thm 7.2. If \(a \) belongs to exponent \(h \) mod \(m \), and \(a^r \equiv 1 \pmod{m} \), then \(h \mid r \).

Def. If \(g \) is an integer that belongs to exponent \(\varphi(m) \mod m \), then \(g \) is called a primitive root mod \(m \).

Thm 7.3. If \(g \) is a primitive root modulo \(m \), then \(\{ g, g^2, \ldots, g^{\varphi(m)} \} \) form a reduced rep. by \(m \mod m \).

Ex. modulus 7
1. \(2, 2^2, 2^3 \equiv 1 \pmod{7} \) no
2. \(3 \), yes
3. \(4 \), yes
4. \(4^3 \equiv 64 \equiv 1 \pmod{7} \) no
5. \(5 \), yes
6. \(6^2 \equiv 1 \pmod{7} \) no

Q. Does primitive root exist for every modulus?

Unfortunately, no!
Ex. There is no primitive root mod 8.

because
\[1 \equiv 1 \pmod{8} \]
\[3^2 \equiv 1 \pmod{8} \]
\[5^2 \equiv 1 \pmod{8} \]
\[7^2 \equiv 1 \pmod{8} \]

Thm 7.4 If \(a \) belongs to the exponent \(h \) mod \(m \), and \(\gcd(k, h) = d \), then \(a^k \) belongs to exponent \(h/d \) mod \(m \).

Cor. 1 If \(g \) is a primitive root modulo \(m \), then \(g^r \) is a primitive root modulo \(m \) if and only if \(\gcd(r, \phi(m)) = 1 \).

Thm 7.5 There exist any primitive root modulo \(m \), there are exactly \(\phi(\phi(m)) \) mutually incongruent primitive roots.

Ex. modulus	primitive roots	\(\phi(\phi(m)) \)
1 | 1 | 1
2 | 1 | 2
3 | 2 | 1
4 | 2, 3 | 2
5 | 5 | 1
6 | 3, 5 | 2
7 | no | x
8 | 2, 5 | 2
9 | 3, 7 | 2
10 | 3, 7 | 2
Thm 7.6 A modulus m has primitive roots if and only if
m is 2 or 4 or a number of the form p^a or $2p^a$
where p is an odd prime.

The proof of this theorem is hard. We omit it here.

Proof of Thm 7.6

Let $k_i = \frac{k_i}{d}$, $h_i = \frac{h_i}{d}$. Suppose that a^k belongs to exponent f.

First of all, $(a^k)^{h_i} \equiv a^{k_i h_i} \equiv (a^h)^{k_i} \equiv 1 \pmod{m}$

Then by Thm 7.2 $f | h_i$.

On the other hand,

$1 \equiv (a^k)^2 \equiv a^{2k} \pmod{m}$.

So by Thm 7.2 $h | k_j$ so $h_i | k_i j$.

But $\gcd(h_i, k_i) = 1$, we have $h_i | j$.

Therefore $h_i = 0$

Ex

$m = 11$

By Thm 7.5. There are $\phi(\phi(11)) = \phi(10) = 4$ primitive roots.

We can check that 2 is a primitive root.

So the other three primitive roots are given by

$2^3, 2^7, 2^9$ which are congruent to

$8, 7, 6$ modulo 11.