Record multiple choice answers below

(1) (A) ☐ (C) (D) (E) (F)
(2) (A) (B) ☐ (D) (E) (F)
(3) (A) (B) (C) (D) ☐ (F)
(4) (A) (B) (C) (D) (E) ☐
(5) (A) (B) (C) (D) ☐ (F)
(6) ☐ (B) (C) (D) (E) (F)
(7) (A) (B) (C) (D) ☐ (F)
(8) (A) ☐ (C) (D) (E) (F)
(9) (A) (B) (C) (D) (E) ☐
(10) ☐ (B) (C) (D) (E) (F)
Multiple Choice Section

Each question in this section is worth 5 points. You can write on these pages. Mark the answers on the right for your own use. Record the answers on page 1 for grading.

(1) 105 ≡ _____ (mod 13)
 (A) 6 (B) 7 (C) 5 (D) 9 (E) None of these.

\[105 \equiv 13 \times 8 + 1 \]

(2) \(\phi(407) = _____ \)
 (A) 280 (B) 416 (C) 360 (D) 400 (E) 450 (F) None of these.

\[407 = 11 \times 37 \]
\[\phi(407) = \phi(11) \phi(37) = 10 \times 36 = 360 \]

(3) If \(a \equiv 2 \) (mod 6) and \(b \equiv 3 \) (mod 6), then \(11a - 4b \equiv _____ \) (mod 6).
 (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 (F) None of these.

\[11a - 4b \equiv 11 \times 2 - 4 \times 3 \equiv 10 \equiv 4 \pmod{6} \]

(4) If \(a \equiv -2 \) (mod 7), then \(a^{2017} \equiv _____ \) (mod 7)
 (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 (F) None of these.

Since 7 \(\nmid a \), By Fermat's Thm,
\[a^{6} \equiv 1 \pmod{7} \]

So \[a^{2017} = a^{2016+1} = 6 \times 336 + 1 \equiv a \equiv 5 \pmod{7} \]
(5) Which of the following is NOT a **complete residue system** modulo 7?

(A) \{0, 1, 2, 3, 4, 5, 6\}
(B) \{5, 6, 7, 8, 9, 10, 11\}
(C) \{6, 10, 15, 20, 25, 30\}
(D) \{-15, -13, -5, 7, 10, 18, 26\}
(E) \{2, 4, 8, 16, 32, 64, 128\}
(F) none of these.

\[2 \equiv 16 \pmod{7} \]

(6) Which of the following is NOT a **reduced residue system** modulo 8?

(A) \{1, 1, 11^2, 11^3\}
(B) \{1, 3, 5, 7\}
(C) \{-15, -5, 5, 15\}
(D) \{3, 9, 15, 21\}
(E) \{-3, -1, 1, 3\}
(F) none of these.

\[1 \equiv 11^2 \pmod{8} \]

(7) The exponent of 7 in the canonical representation of 50! is

(A) 4
(B) 5
(C) 6
(D) 7
(E) 8
(F) none of these.

\[\left[\frac{50}{7} \right] + \left[\frac{50}{7^2} \right] = 7 + 1 = 8 \]
(8) Which of the following is not a primitive Pythagorean triple?

(A) (7, 24, 25) (B) (13, 84, 87) (C) (33, 56, 65) (D) (20, 21, 29) (E) (28, 45, 53) (F) none of these.

\[1^2 + 6^2 = 8^2 \]

(9) Which of the following statement is **FALSE**?

(A) If \(a \) is coprime with \(b \), then \(a^3 \) is coprime with \(b^2 \).

(B) If \(ac \equiv bc \pmod{mc} \), then \(a \equiv b \pmod{m} \).

(C) If \(p \) is an odd prime, then \(2^{p-1} \equiv 1 \pmod{p} \).

(D) If \(2^n - 1 \) is a prime, then \(2^{n-1}(2^n - 1) \) is a perfect number.

(E) If \(2^n - 1 \) is a prime, then \(p \) is also a prime.

(F) If \(p \) is a prime, then \(2p + 1 \) is also a prime.

\[T \triangleq 7 \quad 2p+1 = 15 \sim \text{(composite)} \]

(10) This question is about the primality tests of Fermat and Miller. Which one of the following statements is **TRUE**?

(A) There are infinitely many Carmichael numbers.

(B) There exists a number \(n \) which passes Miller’s test to every base coprime with \(n \).

(C) Pseudoprimes to base \(a \) are also strong pseudoprimes to base \(a \).

(D) If a number \(n \) passes Miller’s test to some base \(a \), then \(n \) must be a prime.

(E) If \(n \) passes Fermat’s test to some base \(a \), then \(n \) also passes Miller’s test to base \(a \).

(F) none of these.
"Show work" for full credit problems

1 (15 pts) What is the remainder when 1234321 is divided by 17?

Note that \[1234 \equiv 17 \times 72 + 10 \]

So \[1234^{4321} \equiv 10^{9321} \pmod{17} \]

By Fermat's thm. \[10^{16} \equiv 1 \pmod{17} \]

So \[10^{9321} = 10^{16 	imes 580 + 1} = (10^{16})^{580} \cdot 10 \equiv 10 \pmod{17} \]

Hence the remainder is 10.

2 (15 pts) Show that 124 is a pseudoprime to base 5.

124 = 31 \times 2^2 is not a prime.

All we need to check is that \[5^{123} \equiv 1 \pmod{124} \]

But note that \[5^3 = 125 \equiv 1 \pmod{124} \]

So \[5^{123} = 5^3 \cdot 41 = (5^3)^4 \cdot 1 \equiv 1 \pmod{124} \]

Thus 124 is a pseudoprime to base 5.
3 (15 pts) Show that the numbers $5, 5^2, 5^3, 5^4, 5^5, 5^6$ form a reduced residue system modulo 7.

Since $\phi(7) = 7 - 1 = 6$, the set has the right number of elements. Also since $(5, 7) = 1$, it follows that all the numbers $5, 5^2, 5^3, \ldots, 5^6$ are coprime with 7. Moreover we check that modulo 7:

$5 \equiv 5, \quad 5 \cdot 2 \equiv 4, \quad 5 \cdot 3 \equiv 6, \quad 5 \cdot 4 \equiv 2, \quad 5 \cdot 5 \equiv 3, \quad 5 \cdot 6 \equiv 1.$

So they form a reduced residue system.

4 (5 pts) Show that $7x^3 + 2 = y^3$ has no solution in integers. Assume $x, y \in \mathbb{Z}$.

Since $0^3 \equiv 0 \pmod{7}, \quad 1^3 \equiv 1 \pmod{7}, \quad 2^3 \equiv 1 \pmod{7}, \quad 3^3 \equiv 6 \pmod{7}$

$4^3 \equiv 1 \pmod{7}, \quad 5^3 \equiv 6 \pmod{7}, \quad 6^3 \equiv 6 \pmod{7}$

It follows that $x^3 \equiv 0, 1, 6 \pmod{7}$ and $y^3 \equiv 0, 1, 6 \pmod{7}$.

Then $7x^3 + 2 \equiv 2 \pmod{7}$

So for all $x, y \in \mathbb{Z}$, we have

$7x^3 + 2 \equiv y^3 \pmod{7}$

Contradiction. So there does not exist solution in integers.
Record multiple choice answers below

(1) (A) (B) (C) (D) (E) (F)
(2) () (B) (C) (D) (E) (F)
(3) (A) (B) (C) (D) (E) (F)
(4) (A) (B) (C) (D) (E) (F)
(5) (A) (B) (C) (D) (E) (F)
(6) (A) (B) (C) (D) (E) (F)
(7) (A) (B) (C) (D) (E) (F)
(8) (A) (B) (C) (D) (E) (F)
(9) (A) (B) (C) (D) (E) (F)
(10) (A) (B) (C) (D) (E) (F)
Multiple Choice Section

Each question in this section is worth 5 points. You can write on these pages. Mark the answers on the right for your own use. Record the answers on page 1 for grading.

(1) $113 \equiv \underline{} \pmod{13}$
(A) 6 (B) 1 (C) 7 (D) 5 (E) 3 (F) none of these.

$$113 = 13 \times 8 + 9.$$

(2) $\varphi(319) = \underline{}$
(A) 280 (B) 416 (C) 360 (D) 400 (E) 450 (F) none of these.

$$319 = 11 \times 29$$

$$\varphi(319) = ((11-1) \times (29-1)) = 10 \times 28 = 280$$

(3) If $a \equiv 2 \pmod{7}$ and $b \equiv 3 \pmod{7}$, then $11a - 4b \equiv \underline{} \pmod{7}$.
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4 (F) none of these.

$$11a - 4b \equiv 11 \times 2 - 4 \times 3 \equiv 10 \equiv 3 \pmod{7}$$

(4) If $a \equiv -7 \pmod{9}$, then $a^{2017} \equiv \underline{} \pmod{9}$
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4 (F) none of these.

$$\varphi(a) = 9 \times \frac{2}{3} = 6.$$ By Euler's theorem, $a^6 \equiv 1 \pmod{9}$

So $a^{2017} \equiv a^{2016+1} \equiv a^1 \equiv a \equiv 2 \pmod{9}$
(5) Which of the following is **NOT** a *complete residue system* modulo 7?

(A) \{0, 1, 2, 3, 4, 5, 6\}
(B) \{5, 6, 7, 8, 9, 10, 11\}
(C) \{2, 4, 8, 16, 32, 64, 128\}
(D) \{-15, -13, -5, 7, 10, 18, 26\}
(E) \{0, 5, 10, 15, 20, 25, 30\}
(F) none of these.

\[2 \equiv 16 \pmod{7}\]

(6) Which of the following is **NOT** a *reduced residue system* modulo 8?

(A) \{3, 9, 15, 21\}
(B) \{1, 3, 5, 7\}
(C) \{-15, -5, 15\}
(D) \{1, 11, 11^2, 11^3\}
(E) \{-3, -1, 1, 3\}
(F) none of these.

\[1 \equiv 11^2 \pmod{8}\]

(7) The exponent of 5 in the canonical representation of 50! is ______.

(A) 10
(B) 11
(C) 12
(D) 13
(E) 14
(F) none of these.

\[\left\lfloor \frac{50}{5} \right\rfloor + \left\lfloor \frac{50}{5^2} \right\rfloor = 10 + 2 = 12\]
(8) Which of the following is not a primitive Pythagorean triple?

(A) (7, 24, 25) (B) (33, 56, 65) (C) (13, 84, 87) (D) (20, 21, 29) (E) (28, 45, 53) (F) none of these.

\[\frac{3^2}{2} + 84^2 = 85^2 \]

(9) Which of the following statement is **FALSE**?

(A) If \(a \) is coprime with \(b \), then \(a^3 \) is coprime with \(b^2 \).

(B) If \(ab \equiv bc \pmod{mc} \), then \(a \equiv b \pmod{m} \).

(C) If \(p \) is a prime, then \(2p + 1 \) is also a prime.

(D) If \(2^n - 1 \) is a prime, then \(2^{n-1}(2^n - 1) \) is a perfect number.

(E) If \(2^p - 1 \) is a prime, then \(p \) is also a prime.

(F) If \(a \equiv b \pmod{m_1} \), \(a \equiv b \pmod{m_2} \) and \((m_1, m_2) = 1 \), then \(a \equiv b \pmod{m_1 \cdot m_2} \).

\[
\text{Take } \quad p = 7, \quad 2p+1 = 15 \text{ is composite.}
\]

(10) This question is about the primality tests of Fermat and Miller. Which one of the following statements is **TRUE**?

(A) If \(n \) passes Fermat’s test to some base \(a \), then \(n \) also passes Miller’s test to base \(a \).

(B) There exists number \(n \) which passes Miller’s test to every base coprime with \(n \).

(C) Pseudoprimes to base \(a \) are also strong pseudoprimes to base \(a \).

(D) If a number \(n \) passes Miller’s test to some base \(a \), then \(n \) must be a prime.

(E) There are infinitely many Carmichael numbers.

(F) none of these.
"Show work" for full credit problems

1 (15 pts) Show that the numbers $5, 5^2, 5^3, 5^4, 5^5, 5^6$ form a reduced residue system modulo 7.

See Version A

2 (15 pts) What is the remainder when 1234^{121} is divided by 17?

See Version A
3 (15 pts) Show that 124 is a pseudoprime to base 5.

4 (5 pts) Show that $7x^3 + 2 = y^3$ has no solution in integers.