Multiple Choice Section

(1) The number of integer solutions to the linear Diophantine equation $12x - 21y = 4$ is ______

 (A) 0
 (B) 1
 (C) 2
 (D) 3
 (E) infinite
 (F) none of these.

(2) If $a \equiv 4 \pmod{5}$ and $b \equiv 3 \pmod{5}$, then $2a + 3b \equiv$ ______ \pmod{5}.

 (A) 0
 (B) 1
 (C) 2
 (D) 3
 (E) 4
 (F) 5.

(3) The inverse of 7 modulo 11 is ______

 (A) 1
 (B) 3
 (C) 8
 (D) 9
 (E) 10
 (F) none of these.
(4) If \(m \) is an integer, then a complete residue system modulo \(m \) must consists of ______ numbers.

(A) 0 (B) 1 (C) \(m - 1 \) (D) \(m \) (E) \(m^2 \) (F) none of these.

(5) Which of the following is NOT a complete residue system modulo 5?

(A) \{0, 1, 2, 3, 4\} (B) \{6, 7, 8, 9, 10\} (C) \{0, 5, 10, 15, 20\}
(D) \{3, 6, 9, 12, 15\} (E) \{-2, -1, 0, 1, 2\} (F) none of these

(6) Which of the following is NOT a reduced residue system modulo 5?

(A) \{1, 2, 3, 4\} (B) \{11, 12, 13, 14\} (C) \{2, 4, 8, 16\}
(D) \{4, 8, 12, 16\} (E) \{3, 9, 27, 81\} (F) \{1, 9, 17, 36\}.
1 Use the Chinese Remainder Theorem to solve the linear diophantine system
\[
\begin{align*}
3x &\equiv 2 \pmod{5} \\
4x &\equiv 5 \pmod{7} \\
5x &\equiv 7 \pmod{11}
\end{align*}
\]
2 Find the prime factorization for 31!.
3 Let $p = 5$ and $q = 11$. So $n = pq = 55$ and $\phi(n) = (p - 1)(q - 1) = 40$. Bob chooses his public exponent $e = 27$ which is coprime with 40. Then he publishes his public key $(55, 27)$ openly.

(a) Compute Bob’s private key.

(b) Suppose that Alice wants to send an integer 15 to Bob. Compute the cyphertext c she will send in the open channel.

(c) After receiving the cyphertext c, check that Bob is able to recover the original integer 15 using his private key.
4 Use *Euclid's division algorithm* to find the general solution of the linear Diophantine equation

\[6x + 11y = 3. \]
5 Solve the linear congruence equation

\[7x \equiv 5 \pmod{15}. \]