Math 373 — Practice Final Exam 2

Multiple Choice Section

(1) The number of integer solutions to the linear Diophantine equation $12x - 21y = 4$ is ______
 (A) 0 (B) 1 (C) 2 (D) 3 (E) infinite (F) none of these.

Solution. A.
Since $\gcd(12, -21) = 3$ which does not divide 4, so the equation has no integer solutions.

(2) If $a \equiv 4 \pmod{5}$ and $b \equiv 3 \pmod{5}$, then $2a + 3b \equiv ____ \pmod{5}$.
 (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 (F) 5.

Solution. C.
$2a + 3b \equiv 2 \times 4 + 3 \times 3 \equiv 8 + 9 \equiv 2 \pmod{5}$

(3) The inverse of 7 modulo 11 is ______
 (A) 1 (B) 3 (C) 8 (D) 9 (E) 10 (F) none of these.

Solution. C.
(4) If \(m \) is an integer, then a complete residue system modulo \(m \) must consists of ______ numbers.

(A) 0 (B) 1 (C) \(m - 1 \) (D) \(m \) (E) \(m^2 \) (F) none of these.

Solution. D.

(5) Which of the following is NOT a complete residue system modulo 5?

(A) \{0, 1, 2, 3, 4\} (B) \{6, 7, 8, 9, 10\} (C) \{0, 5, 10, 15, 20\}

(D) \{3, 6, 9, 12, 15\} (E) \{-2, -1, 0, 1, 2\} (F) none of these

Solution. C.

(6) Which of the following is NOT a reduced residue system modulo 5?

(A) \{1, 2, 3, 4\} (B) \{11, 12, 13, 14\} (C) \{2, 4, 8, 16\}

(D) \{4, 8, 12, 16\} (E) \{3, 9, 27, 81\} (F) \{1, 9, 17, 36\}.

Solution. F.
1 Use the Chinese Remainder Theorem to solve the linear diophantine system

\[
\begin{align*}
3x &\equiv 2 \pmod{5} \\
4x &\equiv 5 \pmod{7} \\
5x &\equiv 7 \pmod{11}
\end{align*}
\]

Solution. Observe that

\[
\begin{align*}
c_1 &= 4, c_2 = 3, c_3 = -3 \\
n_1 &= 77, n_2 = 55, n_3 = 35 \\
\bar{n}_1 &= 3, \bar{n}_2 = -1, \bar{n}_3 = 6.
\end{align*}
\]

So the solution to the system, by the Chinese Remainder Theorem, can be written as

\[
x \equiv 4 \times 77 \times 3 + 3 \times 55 \times (-1) + (-3) \times 35 \times 6 \equiv 129 \pmod{385}.
\]

Here 385 = 5 \times 7 \times 11.
2 Find the prime factorization for $31!$.

Solution.

\[
\left\lfloor \frac{31}{2} \right\rfloor + \left\lfloor \frac{31}{4} \right\rfloor + \left\lfloor \frac{31}{8} \right\rfloor + \left\lfloor \frac{31}{16} \right\rfloor = 15 + 7 + 3 + 1 = 26
\]

\[
\left\lfloor \frac{31}{3} \right\rfloor + \left\lfloor \frac{31}{9} \right\rfloor + \left\lfloor \frac{31}{27} \right\rfloor = 10 + 3 + 1 = 14
\]

\[
\left\lfloor \frac{31}{5} \right\rfloor + \left\lfloor \frac{31}{25} \right\rfloor = 6 + 1 = 7
\]

\[
\left\lfloor \frac{31}{7} \right\rfloor = 4
\]

\[
\left\lfloor \frac{31}{11} \right\rfloor = 2
\]

\[
\left\lfloor \frac{31}{13} \right\rfloor = 2
\]

\[
\left\lfloor \frac{31}{17} \right\rfloor = 1
\]

\[
\left\lfloor \frac{31}{19} \right\rfloor = 1
\]

\[
\left\lfloor \frac{31}{23} \right\rfloor = 1
\]

\[
\left\lfloor \frac{31}{29} \right\rfloor = 1
\]

\[
\left\lfloor \frac{31}{31} \right\rfloor = 1.
\]

So

\[
31! = 2^{26} \times 3^{14} \times 5^7 \times 7^4 \times 11^2 \times 13^2 \times 17 \times 19 \times 23 \times 29 \times 31
\]

is the prime factorization for $31!$.
Let $p = 5$ and $q = 11$. So $n = pq = 55$ and $\phi(n) = (p - 1)(q - 1) = 40$. Bob chooses his public exponent $e = 27$ which is coprime with 40. Then he publishes his public key $(55, 27)$ openly.

(a) Compute Bob’s private key.

Solution. We need to solve $27d \equiv 1 \pmod{40}$.

Clearly we may choose $d = 3$ (or one may see this by Euclid’s algorithm). So $(55, 3)$ is Bob’s private key.

(b) Suppose that Alice wants to send an integer 15 to Bob. Compute the cyphertext c she will send in the open channel.

Solution.

$$c \equiv 15^{27} \equiv (15^2)^{13} \times 15 \equiv 5^{13} \times 15 \equiv (5^3)^4 \times 75 \equiv 15^4 \times 20 \equiv 5^2 \times 20 \equiv 5 \pmod{55}$$

So Alice will send out 5.

(c) After receiving the cyphertext c, check that Bob is able to recover the original integer 15 using his private key.

Solution. Bob will recover the original integer by computing

$$m \equiv c^d \equiv 5^3 \equiv 125 \equiv 15 \pmod{55}.$$
Use Euclid’s division algorithm to find the general solution of the linear Diophantine equation
\[6x + 11y = 3. \]

Solution. Euclid’s algorithm:

\[
\begin{align*}
11 &= 6 \times 1 + 5 \\
6 &= 5 \times 1 + 1 \\
\end{align*}
\]

Now we have \(1 = 6 - 5 = 6 - (11 - 6) = 6 \times 2 + 11 \times (-1)\). Therefore

\[
6 \times 6 + 11 \times (-3) = 3
\]

and we get a solution \(x_0 = 6, y_0 = -3\). By our theory the general solution can be written in the shape

\[
\begin{align*}
x &= 6 + 11t \\
y &= -3 - 6t
\end{align*}
\]
5 Solve the linear congruence equation

\[7x \equiv 5 \pmod{15}. \]

Solution. We observe that \(7 \times 13 \equiv 1 \pmod{15} \). So we multiply by 13 on both sides of the congruence and get

\[13 \times 7x \equiv 13 \times 5 \pmod{15}. \]

This is

\[x \equiv 5 \pmod{15}. \]

So the set of solutions to the congruence are those integers which are congruent to 5 modulo 15.