Argue by contradiction

Problem 1. Prove that there is no function \(f : \mathbb{R} \rightarrow \mathbb{R} \) such that
\[
f(x) + f(1 - x) = x
\]
for any real \(x \).

Problem 2. Prove that the series \(\sum_{n=1}^{\infty} \frac{1}{n} \) is divergent.

Problem 3. Prove there are infinitely many prime integers.

Problem 4. Let \(a, b, c \) be odd integers. Prove that the equation \(ax^2 + bx + c = 0 \) cannot have rational solutions.

Problem 5. (Homework) Prove there is no arithmetic progression which has \(\sqrt{2}, \sqrt{3}, \sqrt{5} \) among its terms.

Problem 6. Prove that if \(2^n + 1 \) is a prime number, then the positive integer \(n \) is a power of 2.

Problem 7. Let \(n \) be a positive integer. Prove that one of the integer numbers \(n, n + 1, n + 2, \ldots, 2n - 1, 2n \) is a perfect square.

Problem 8. Let \(S \) be a set rational numbers that is closed under addition and multiplication (that is, whenever \(a, b \) are members of \(S \), so are \(a + b \) and \(ab \)), and having the property that for every rational number \(r \) exactly one of the following three statements is true:
\[
r \in S, \quad -r \in S, \quad 0 \in S.
\]

a) Prove that 0 does not belong to \(S \).
b) Prove that all positive integers belong to \(S \).
c) Prove that \(S \) is the set of all positive rational numbers.

Problem 9. Let \(a, b, c \) be rational numbers such that \(a + b \sqrt{2} + c \sqrt{4} = 0 \). Prove that \(a = b = c = 0 \).