Problem 1. Let \(a \) be a fixed real number. Prove that \(a^2 \geq x + 1 \) for any \(x \in \mathbb{R} \) if and only if \(a = e \).

Solution: If \(a = e \) then we study the behavior of the function \(f(x) = e^x - x - 1 \). The derivative \(f'(x) = e^x - 1 \) has negative sign on \((-\infty, 0)\) and positive sign on \((0, \infty)\), so the function has a minimum at \(x = 0 \). But \(f(x) \geq f(0) \) can be written \(e^x \geq x + 1 \).

Suppose now \(a^2 \geq x + 1 \) for any \(x \). Taking \(x = 0 \) we see \(a \geq 2 \). Consider the function \(f(x) = a^2 - x - 1 \). The derivative \(f'(x) = 2a \) has the root \(x_0 = -\ln a \) which is a minimum for the function \(f \). By hypothesis \(f(x) \geq 0 \) for all \(x \in \mathbb{R} \), therefore \(f(x_0) \geq 0 \). But \(f(x_0) = \frac{(\ln a)(\ln a - a(\ln a - 1))}{a \ln a} \leq \frac{(\ln a - 1)(\ln a - a(\ln a - 1))}{a \ln a} \leq 0 \). Consequently \(\ln a = \ln a - 1 = 0 \), so \(a = e \).

Problem 2. Let \(a > 0 \) be a fixed real number. Prove that \(a^2 \geq x^a \) for all \(x > 0 \) if and only if \(a = e \).

Solution: The inequality is equivalent with \(f(x) \leq f(a) \), for any \(x > 0 \), where \(f(x) = \frac{\ln x}{x} \). Therefore \(x = a \) is a maximum for \(f \), but this function has a maximum only in \(x = e \).

Problem 3. Consider the sequence defined by \(\left(1 + \frac{1}{n}\right)^{n+x_n} = e \). Prove that \(x_n \) is decreasing towards the limit \(\frac{1}{2} \).

Solution: By hypothesis \(x_n = f(n) \), where \(f(x) = \frac{1}{\ln(x+1) - \ln x} - x \). We prove \(f \) is increasing on \([1, \infty)\). It suffices to prove \(f'(x) = \frac{1}{x(x+1)\ln^2(1+1/x)} - 1 \geq 0 \) or equivalently \(g(x) = \frac{1}{\sqrt{x(x+1)}} - \ln(x+1) + \ln x \geq 0 \).

Since \(g'(x) = \frac{1}{x(x+1)} \left(1 - \frac{x+1/2}{\sqrt{x(x+1)}}\right) < 0 \), we have \(g(x) \geq \lim_{x \to \infty} g(x) = 0 \).

For the limit of the sequence it suffices to prove that \(\lim_{x \to \infty} f(x) = \frac{1}{2} \), or with \(y = \frac{1}{x} \), \(\lim_{y \to 0} \frac{1}{\ln(1+y)} - \frac{1}{y} = \frac{1}{2} \), which can be proved easily using l’Hôpital’s rule or a Taylor expansion.

Problem 4. Solve the equation \(2^x + 2\sqrt{1-x^2} = 3 \).

Solution: Obviously, the solutions of the equation satisfy \(x \in [0, 1] \). We prove \(x = 0 \) and \(x = 1 \) are the only solutions of the equation. The function \(f : [0, 1] \to \mathbb{R} \) is increasing on the interval \([0, \sqrt{2}/2]\) and decreasing on \([\sqrt{2}/2, 1]\). The identity \(f(x) = f(\sqrt{1-x^2}) \) makes it sufficient to prove \(f \) increasing on \([0, \sqrt{2}/2]\). The function \(g(x) = \frac{2x}{x^2} \) is decreasing on \([0, 1]\), since \(g'(x) = \frac{2x}{x^2} (x \ln 2 - 1) < 0 \). Then \(f'(x) = x \ln 2 \left(g(x) - g(\sqrt{1-x^2})\right) > 0 \), since \(x < \sqrt{1-x^2} \) on \([0, \sqrt{2}/2]\).

Problem 5. Let \(f(x) \) be a positive-valued function over the reals such that \(f'(x) > f(x) \) for all \(x \). For what \(k \) must there exist \(N \) such that \(f(x) > e^{kx} \) for \(x > N \)? [P1994]

Solution: The condition can be written \(g'(x) > 0 \), where \(g(x) = \ln f(x) - x \) and an equivalent form for \(f(x) > e^{kx} \) is

\[
(0.1) \quad g(x) > (k-1)x
\]

For \(k \geq 1 \), and \(g(x) = \frac{k-1}{2}x \) there is no \(N \) such that \(0.1 \) is satisfied for \(x > N \). If \(k < 1 \) then \(\lim_{x \to \infty} g(x) - (k-1)x = \infty \), so there is an \(N \) such that for \(x > N \) \(0.1 \) holds.

Problem 6. Let \(f \) be an infinitely differentiable real-valued function defined on the real numbers. If

\[
f\left(\frac{1}{n}\right) = \frac{n^2}{n^2 + 1}, \quad n = 1, 2, 3, \ldots,
\]

compute the values of the derivatives \(f^{(k)}(0), k = 1, 2, 3, \ldots \). [P1992]

Solution: With \(g(x) = f(x) - \frac{1}{1 + x^2} \) we have \(g\left(\frac{1}{n}\right) = 0, \quad n = 1, 2, 3, \ldots \). By the theorem of Rolle there is a sequence \((x^{(1)}_n)_n \) such that \(\frac{1}{n+1} < x^{(1)}_n < \frac{1}{n} \) and \(g'(x^{(1)}_n) = 0 \). As a consequence of \((*)\) the sequence \(x^{(1)}_n \) is decreasing
to 0, hence \(g'(0) = 0 \). Using again Rolle’s theorem there is a sequence \((x_n^{(2)})\) such that \(x_{n+1}^{(1)} < x_n^{(2)} < x_n^{(1)} \) (**) and \(g^{(2)}(x_n^{(2)}) = 0 \). From (**), \(x_n^{(2)} \) is decreasing to 0, and \(g^{(2)}(0) = 0 \). By recurrence we prove in this way that \(g^{(k)}(0) = 0 \), for any \(k \). Thus \(f^{(k)}(0) = \phi^{(k)}(0) \), where \(\phi(x) = \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \ldots \) and consequently \(f^{(2k+1)}(0) = 0 \), \(f^{(2k)}(0) = (-1)^n(2n)! \).

Problem 7. Let \(f \) be a function such that \(f(1) = 1 \) and \(f'(x) = \frac{1}{x^2 + f^2(x)} \) for all \(x \geq 1 \). Show that \(\lim_{x \to \infty} f(x) \) exists and is less than \(1 + \frac{\pi}{4} \).

Solution: The function has positive derivative so is increasing. Then the limit \(\lim_{x \to \infty} f(x) \) exists and \(f'(x) \leq \frac{1}{x^2 + f(1)^2} = \frac{1}{x^2 + 1} \) for any \(x \geq 1 \), which proves that the function \(g(x) = f(x) - \arctan x \) is decreasing. Hence \(g(x) \leq g(1) = 1 - \frac{\pi}{4} \) and consequently \(f(x) \leq \arctan x + 1 - \frac{\pi}{4} \). Therefore \(\lim_{x \to \infty} f(x) \leq \lim_{x \to \infty} \left(\arctan x + 1 - \frac{\pi}{4} \right) = 1 + \frac{\pi}{4} \).

Problem 8. Let \(f : (-2, 2) \to \mathbb{R} \) be a function of class \(C^2 \) such that \(f(0) = 0 \). Show that the sequence \((u_n)\) defined by \(u_n = \sum_{k=1}^{n} f\left(\frac{x}{n}\right) \) is convergent and compute its limit.

Solution: Let \(c_k \in \left(0, \frac{k}{n^2}\right)\) be such that \(f\left(\frac{k}{n^2}\right) - f(0) = \frac{k}{n^2} f'(c_k) \), and \(d_k \in (0, c_k)\) such that \(f'(c_k) - f'(0) = c_k f''(d_k) \). Then \(|u_n| = \sum_{k=1}^{n} \frac{k}{n^2} f'(0) = |\sum_{k=1}^{n} \frac{k}{n^2} f''(d_k)| \leq \sum_{k=1}^{n} \frac{k^2}{n^2} \max_{x \in [0, 1]} |f''(x)| \). Passing at limit with \(n \to \infty \) we obtain \(\lim_{n \to \infty} u_n = f'(0) \).

Problem 9. a) Solve in real numbers the equation \(2x + 4x^2 = 3x + 5x^3 \).

b) Solve in real numbers the equation \(2x + 5x^2 = 3x + 4x^3 \).

Solution: a) For \(x > 0 \), \(3x + 5x^2 > 2x + 4x^2 \), and for \(x < 0 \), \(3x + 5x^2 < 2x + 4x^2 \), so \(x = 0 \) is the only solution.

b) The mean value theorem for the function \(f(t) = t^x \) shows there is \(c \in (2, 3) \) and \(d \in (4, 5) \) such that \(3x - 2x = xc^{x-1} \) and \(5x - 4x = xd^{x-1} \). The equation becomes \(x \left[\left(\frac{d}{c} \right)^{x-1} - 1 \right] = 0 \), and has the solutions \(x = 0 \) and \(x = 1 \).

Problem 10. Solve in real numbers the equation \(5x + 5x^2 = 4x + 6x^2 \).

Solution: Write the equation as \(5x - 4x = 6x^2 - 5x^2 \). Using the mean theorem for the function \(f(t) = t^x \), there is \(c \in (4, 5) \) such that \(5x - 4x = xc^{x-1} \). Similarly for the function \(g(t) = t^x \), there is \(d \in (5, 6) \) such that \(6x^2 - 5x^2 = x^2d^{x-1} \). The equation becomes \(xc^{x-1} = x^2d^{x-1} \). One obvious solution is \(x = 0 \). Looking for non-zero solutions, we see that necessarily \(x > 0 \).

Suppose \(0 < x < 1 \). Then \(x = \left(\frac{d^{1+x}}{c} \right)^{1-x} > 1 \). Contradiction.

For \(x > 1 \), we obtain the contradiction \(x = \left(\frac{d^{1+x}}{c} \right)^{1-x} < 1 \). Therefore \(x = 0 \) and \(x = 1 \) are the only solutions.

Problem 11. Evaluate the limit \(\lim_{n \to \infty} n^2 \left(\left(1 + \frac{1}{n+1} \right)^{n+1} - \left(1 + \frac{1}{n} \right)^n \right) \).

Problem 12. Let \(f(x) = (x^2 - 1)^n \), and let \(P_n(x) \) be the \(n \)-th derivative of \(f(x) \). Prove that \(P_n(x) \) is a polynomial of degree \(n \) with \(n \) real, distinct roots in \((-1, 1)\).