2.1: Rates of Change and Tangents to Curves

The *average rate of change* of the function \(y = f(x) \) on \([x_1, x_2]\) is

\[
m = \frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}
\]

where \(h = \Delta x = x_2 - x_1 \).

Examples: In each case find the average rate of change of the function on the given interval:

1. \(g(x) = x^2 \), \([-1, 3]\), \((m = 2) \)

2. \(h(x) = \cos x \), \([\pi/2, 2\pi]\), \((m = -\frac{2}{3\pi}) \)

Note that \(m \) is the slope of the secant connecting \(P \) and \(Q \).
Average Velocity vs. Instantaneous Velocity

If \(y = f(t) \) is position as a function of time \(t \), then the average rate of change \(\frac{\Delta y}{\Delta t} \) may be interpreted as average velocity.

Consider \(f(t) = t^2 + 2t \) over the interval \([1, 1 + h]\).

<table>
<thead>
<tr>
<th>(h)</th>
<th>(1 + h)</th>
<th>(\Delta y/\Delta t)</th>
<th>(h)</th>
<th>(1 + h)</th>
<th>(\Delta y/\Delta t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>-1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0.1</td>
<td>1.1</td>
<td>4.1</td>
<td>-0.1</td>
<td>0.9</td>
<td>3.9</td>
</tr>
<tr>
<td>0.01</td>
<td>1.01</td>
<td>4.01</td>
<td>-0.01</td>
<td>0.99</td>
<td>3.99</td>
</tr>
<tr>
<td>0.001</td>
<td>1.001</td>
<td>4.001</td>
<td>-0.001</td>
<td>0.999</td>
<td>3.999</td>
</tr>
<tr>
<td>0.0001</td>
<td>1.0001</td>
<td>4.0001</td>
<td>-0.0001</td>
<td>0.9999</td>
<td>3.9999</td>
</tr>
</tbody>
</table>

Note that in the above table it appears that the average velocity approaches a limit, namely 4, as \(h \) goes to 0. Hence, the instantaneous velocity at \(t_0 = 1 \) is \(v = 4 \).
Slope of Curve = Slope of Tangent

What happens to the slope of the secant as \(Q \) approaches \(P \) in the graph \(y = f(x) \)? As \(Q \) goes to \(P \), the slope of the secant approaches the slope of the tangent, or the slope of the curve, at the point \(P \). The slope of the tangent may be interpreted as the rate of change of \(y \) with respect to \(x \).

Example: Let’s find the slope of the curve \(y = x^2 + 2x \) at the point \(P(1, 3) \). Take \(x_1 = 1 \) and \(x_2 = 1 + h \). Then \(f(x_1) = 3 \),

\[
f(x_2) = f(1 + h) = (1 + h)^2 + 2(1 + h) = 3 + 4h + h^2
\]

Note that \(Q(1 + h, 3 + 4h + h^2) \). The slope of the secant is:

\[
\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{3 + 4h + h^2 - 3}{1 + h - 1} = 4 + h.
\]

So as \(Q \) goes to \(P \), the slope of the secant approaches 4, the slope of the curve at \(P \). Tangent line equation? \(y = 4x - 1 \).

See the widget on p. 79 for some graphical examples of this phenomenon.