4.7: Optimization Problems

Problem
A farmer wants to enclose a rectangular plot with 60 m of fencing. Find the dimensions of the plot that maximize the area enclosed. Find the resulting area.

Let x, y denote the dimensions of the rectangular plot. We need to maximize the area $A = xy$ subject to the constraint $2x + 2y = 60$.

Get a function of 1-variable $A(x)$, by first using (**) to solve for y

\[y = \frac{1}{2} (60 - 2x) = 30 - x, \]

then substitute into (*)

\[A(x) = xy = x(30 - x) = 30x - x^2. \]

Since both dimensions are positive we get $x \geq 0$ and $30 - x = y \geq 0$. So $0 \leq x \leq 30$.

Now use the Extreme Value Theorem.

\[A'(x) = 30 - 2x = 0 \quad \text{if } x = 15 \]

We have

\[A(0) = A(30) = 0 \quad \text{abs min} \]
\[A(15) = 225 \quad \text{abs max} \]

Thus the dimensions of the plot are $x = 15$ m and $y = 30 - x = 15$ m.

Maximum area: $A(15) = 225$ m2
Methodology for optimization

i. Read the problem carefully; make a sketch and assign variable names.

ii. What is to be optimized (max or min)?

iii. Write down relevant equations. Use constraint(s) to eliminate variable(s). Get function of 1 variable.

iv. Use calculus to find max or min on the relevant interval.

Ex a: Find the point on the line $2x + y = 2$ that lies closest to $(0, 0)$.

The distance from $(0, 0)$ to $P(x, y)$ is $d = \sqrt{x^2 + y^2}$; if P lies on the line then $2x + y = 2$ (constraint). Use the constraint to solve for y: $y = 2 - 2x$.

Then:

Then:

\[
d(x) = \sqrt{x^2 + (2 - 2x)^2} = \sqrt{5x^2 - 8x + 4}
\]

\[
d'(x) = \frac{5x - 4}{\sqrt{5x^2 - 8x + 4}} = 0
\]

if $x = 4/5$.

Sign of $f'(x)$:

\[
\begin{array}{c|c}
\hline
& - & + \\
\hline
4/5 & & \\
\hline
\end{array}
\]

Thus $d(x)$ has an abs. minimum at $x = 4/5$. So the point on the line $2x + y = 2$ that lies closest to the origin is $(4/5, 2 - 2(4/5)) = (4/5, 2/5)$.

Distance to $(0, 0)$: $d(4/5) = 2/\sqrt{5}$.
Ex b: A square-bottom box with no top is to have a volume of 500 cc. What dimensions minimize surface area? Find the resulting surface area.

Let x denote the edge length of the square bottom and let y denote the height of the box. We have

$$V = x^2y = 500.$$

Surface Area

$$S = x^2 + 4xy.$$

Constraint:

$$x^2y = 500$$

Solve: $y = \frac{500}{x^2}$

Then for $x > 0$ we have

$$S(x) = x^2 + \frac{2000}{x}.$$

Now differentiate:

$$S'(x) = 2x - \frac{2000}{x^2}$$

$$= \frac{2(x^3 - 1000)}{x^2} = 0$$

if $x = 10$.

Note $S'(5) = -70$, $S'(20) = 35$

Sign of $S'(x)$: $-\frac{10}{+}$

Abs. min: $S(10) = 300$

The dimensions which minimize surface area:

$x = 10$ cm and

$y = \frac{500}{x^2} = \frac{500}{100} = 5$ cm.

Resulting surface area 300 cm2
Ex c: Find the dimensions of the cylinder with maximum volume that can be inscribed in a hemisphere of radius 3. Find the volume.

The relevant equations are:

\[V = \pi r^2 h \]
maximize

\[r^2 + h^2 = 9 \]
constraint

We have \(r = \sqrt{9 - h^2} \) for \(0 \leq h \leq 3 \).

\[
V(h) = \pi r^2 h = \pi (9 - h^2) h = \pi (9h - h^3)
\]

\[
V'(h) = 3\pi (3 - h^2) = 0 \text{ if } h = \pm \sqrt{3}.
\]

Note that \(h \geq 0 \).

Sign of \(V'(h) \):

\[
\begin{array}{c|c|c}
0 & \sqrt{3} & -\\
\hline
+ & -
\end{array}
\]

So \(V(\sqrt{3}) = 6\sqrt{3}\pi \) max volume, since \(V(0) = V(3) = 0 \).

Dimensions of the cylinder with maximum volume: \(h = \sqrt{3}, \ r = \sqrt{9 - h^2} = \sqrt{6} \).

Ex d: Find the dimensions of the rectangle in the 1\(^{st}\) quadrant with one corner at the origin and the opposite corner on the line \(2x + 3y = 12 \) which maximize area. Find the area.

\[
V'(h) = 3\pi (3 - h^2) = 0 \text{ if } h = \pm \sqrt{3}.
\]

So \(V(\sqrt{3}) = 6\sqrt{3}\pi \) max volume, since \(V(0) = V(3) = 0 \).

Dimensions of the cylinder with maximum volume: \(h = \sqrt{3}, \ r = \sqrt{9 - h^2} = \sqrt{6} \).
Ex e: Design a poster with 50 cm2 of printing, 2 cm side margins and 4 cm top/bottom margins using the least paper. What are its dimensions?

Let x, y denote the width and height of the printed area.

Here is a sketch illustrating the problem:

Eliminate y using $y = 50/x$.

$$A(x) = x\frac{50}{x} + 8x + 4\frac{50}{x} + 32$$
$$= 8x + \frac{200}{x} + 82, \quad x > 0$$

$$A'(x) = 8 - \frac{200}{x^2} = \frac{8(x^2 - 25)}{x^2} = 0$$

if $x = \pm 5$; but only $x = 5 > 0$ is relevant to the problem.

Sign of $A'(x)$: $\overbrace{-}^{5} +$

So the absolute min. is $A(5) = 162$ cm2 and the dimensions of the poster are $9 \text{ cm} \times 18 \text{ cm}$.
Ex f: Find the dimensions of an open top can with volume $512 \pi \text{ cm}^3$ which minimizes surface area.

Volume of a cylinder is $V = \pi r^2 h$.

![Diagram of a cylinder with dimensions labeled]

The surface area of the open top can is the sum of the side area and the area of the base.

$$S = \pi r^2 + 2\pi rh$$

Need to minimize the surface area subject to the constraint that

$$V = \pi r^2 h = 512\pi.$$

Use this to solve for h.

We have $h = 512/r^2$. Then we can write S as a function of r:

$$S(r) = \pi r^2 + 2\pi rh = \pi r^2 + 2\pi r \frac{512}{r^2}$$

$$= \pi r^2 + \frac{1024\pi}{r} \quad r > 0$$

Now differentiate and set equal to 0

$$S'(r) = 2\pi r - \frac{1024\pi}{r^2}$$

$$= \frac{2\pi(r^3 - 512)}{r^2} = 0$$

if $r = 8$. Sign of $S'(r)$:

$\frac{1}{8}$

The dimensions of the cylinder with min surface area: $r = h = 8 \text{ cm}$ and its. surface area is $S(8) = 192\pi \text{ cm}^2$.
Ex g: An open box is to be constructed from a 45 cm \times 24 cm rectangular piece of sheet metal by cutting squares off each corner and folding up the sides. Find the volume of the largest such box and its dimensions.

Let x, y, z denote the dimensions and V the volume of the box. Then

$V = xyz$, $x + 2z = 45$, $y + 2z = 24$

We want to maximize the volume. Eliminate x, y using the constraints. For $0 \leq z \leq 12$

$V(z) = (45 - 2z)(24 - 2z)z$

$= 4z^3 - 138z^2 + 1080z$

$V'(z) = 12z^2 - 276z + 1080 = 0$.

Use the quadratic formula

$z = \frac{276 \pm \sqrt{(-276)^2 - 4 \cdot 12 \cdot 1080}}{2 \cdot 12} = 5, 18$.

Only $z = 5$ is in the interval.

$V(0) = V(12) = 0$

$V(5) = 2450$ abs max

Thus the largest such box has volume 2450 cm3 and it has dimensions 35 cm \times 14 cm \times 5 cm.
Ex h: Find the volume of the largest cone that can be inscribed in a sphere of radius 3 and find its dimensions.

Volume of a cone is $V = \frac{1}{3} \pi r^2 h$.

Note that $r^2 + x^2 = 9$ and $h = x + 3$.

Should we eliminate x or r?

Either $x = \sqrt{9 - r^2}$ or $r = \sqrt{9 - x^2}$:

$$V(r) = \frac{\pi r^2}{3} (\sqrt{9 - r^2} + 3), \quad [0, 3]$$

$$V(x) = \frac{\pi}{3} (9 - x^2)(3 + x), \quad [0, 3]$$

Let’s use the second expression (it looks simpler). Multiplying out and differentiating we get:

$$V(x) = -\frac{\pi}{3} (x^3 + 3x^2 - 9x - 27)$$

$$V'(x) = -\pi (x^2 + 2x - 3) = -\pi (x - 1)(x + 3) = 0$$

if $x = 1, -3$. Only $x = 1$ is in $(0, 3)$.

Use the Extreme Value Theorem: (could also use a sign analysis)

$V(0) = 9\pi, \ V(3) = 0$ and $V(1) = 32\pi/3$ abs max.

So the volume of the largest cone is $32\pi/3$.

The corresponding dimensions are:

$r = \sqrt{9 - x^2} = \sqrt{8}$ and $h = x + 3 = 4$.