Show your work and simplify your answers.

(1) (5 pts) Find the derivative of the following function

\[f(x) = \ln \sqrt{x^2 + 6x + 11} \]

\[y = f(x) = \ln \sqrt{x^2 + 6x + 11} = \frac{1}{2} \ln (x^2 + 6x + 11) \quad (1 \text{ pt}) \]

We use the chain rule with \(y = \frac{1}{2} \ln u \) and \(u = x^2 + 6x + 11 \).

We have

\[\frac{dy}{du} = \frac{1}{2u} = \frac{1}{2(x^2 + 6x + 11)} \]

So

\[\frac{du}{dx} = 2x + 6 \]

\[\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{2x + 6}{2(x^2 + 6x + 11)} \]

\[= \frac{x + 3}{x^2 + 6x + 11} \quad (1 \text{ pt}) \]

(2) (5 pts) Find the derivative of the following function

\[g(x) = x \sin^{-1} x + 3 \tan^{-1} (2x) \]

\[\frac{d}{dx}(x \sin^{-1} x) = \frac{1}{\sqrt{1-x^2}} x + \sin^{-1} x \cdot \frac{1}{\sqrt{1-x^2}} \]

\[= \sin^{-1} x + \frac{x}{\sqrt{1-x^2}} \]

\[\frac{d}{dx}(3 \tan^{-1} 2x) = 3 \cdot \frac{1}{1+(2x)^2} \cdot 2 = \frac{6}{1+4x^2} \]

\[g'(x) = \sin^{-1} x + \frac{x}{\sqrt{1-x^2}} + \frac{6}{1+4x^2} \]

(1 pt)