Please do the problems in order, write clearly and justify your answers. Please use complete sentences. You may assume that the elementary functions are differentiable.

1. Suppose that \(f \) is differentiable on \((0, \infty)\) and that \(\lim_{x \to \infty} f'(x) = L \) where \(L \in \mathbb{R} \). Prove that

\[
\lim_{x \to \infty} f(x + 1) - f(x) = L.
\]

(Hint: Use the Mean Value Theorem.)

2. Use l'Hôpital's rule (Theorem 4.4.3) to evaluate the following limit. Check that all hypotheses are satisfied.

\[
\lim_{x \to 0} \frac{\cos x - 1}{x^2}
\]

3. Use regular partitions \(P_n \) and Theorem 5.1.8 to prove that \(f(x) = x \) is integrable on \([1, 3] \) and to evaluate

\[
\int_1^3 x \, dx.
\]

4. Use the fact that every nondegenerate interval contains both rational and irrational numbers to prove that the function \(g \) given below is not integrable on \([0, 1] \).

\[
g(x) = \begin{cases}
1 & \text{if } x \in \mathbb{Q} \\
0 & \text{otherwise}
\end{cases}
\]

5. Let \(f : [a, b] \to \mathbb{R} \) be a nonincreasing function (i.e. if \(x \leq y \), then \(f(x) \geq f(y) \)). Prove that \(f \) is integrable.

(Hint: Show that if \(P_n \) is a regular partition, then \(U(f, P_n) - L(f, P_n) = (f(a) - f(b))(b - a)/n \).)