3.3 - Uniform Continuity
Recall: \(f : D \to \mathbb{R} \) is cts if \(\forall \epsilon > 0, \exists \delta > 0, \forall x, a \in D \)
\[|x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon. \]

Note: Choice of \(\delta > 0 \) depends on both \(a \) and \(\epsilon > 0 \) in general.
Recall the example \(f(x) = x^2 \). Given \(a \in \mathbb{R}, \epsilon > 0 \) we took
\[\delta = \min \left\{ 1, \frac{\epsilon}{2|a|+1} \right\} \]
so the bigger \(|a| \) is the smaller \(\delta > 0 \) must be.
Perhaps if we were to restrict \(f \) to a bounded set, we could choose \(\delta > 0 \) independently of \(a \). It is useful to have this stronger form of continuity.

Def: Let \(f \) be defined on \(D \). We say that \(f \) is uniformly continuous on \(D \) if \(\forall \epsilon > 0, \exists \delta > 0 \) s.t. \(\forall x, a \in D \)
\[|x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon. \]

Notes: i) If \(f \) is unif. cts. on \(D \), then \(f \) is cts on \(D \).
ii) \(f \) is not unif. cts. on \(D \), iff
\[\exists \epsilon > 0, \forall \delta > 0, \exists x, a \in D \text{ s.t. } |x - a| < \delta \text{ and } |f(x) - f(a)| \geq \epsilon. \]
iii) Equivalently, \(f \) is not unif. cts. on \(D \), iff
\[\exists \epsilon > 0, \forall n \in \mathbb{N}, \exists x_n, a_n \in D \text{ s.t. } \forall n \text{ we have } |x_n - a_n| < \frac{1}{n} \text{ but } |f(x_n) - f(a_n)| > \epsilon. \]

Ex: We return to the case \(f(x) = x^2 \). We show first \(f \) is unif cts on \(D = [-M, M] \).
Let \(\epsilon > 0 \) and set \(\delta = \frac{\epsilon}{2M} \).

Then for all \(x, a \in D \),
\[|x - a| < \delta \Rightarrow |x^2 - a^2| = |x + a||x - a| < (2M)\left(\frac{\epsilon}{2M}\right) = \epsilon. \]

But \(f \) is not unif cts on \(\mathbb{R} \). Set \(\epsilon = 1 \) and let \(\delta > 0 \),
Let \(n > \frac{1}{\delta} \) set \(x = n + \frac{1}{n} \) and \(a = n \). Then \(|x - a| = \frac{1}{n} < \delta \) and
\[|x^2 - a^2| = \left((n+\frac{1}{n})^2 - n^2\right) = \frac{4}{n^2} < \frac{4}{n^2} < \epsilon. \]
Hence \(f \) is not unif. cts. on \(\mathbb{R} \).

Theorem: Let \(f \) be cts on \(I = [a, b] \). Then \(f \) is unif. cts. on \(I \).
Proof: Sps that \(f \) is not unif. cts. on \(I \). Then \(\exists \epsilon > 0 \) and \(\forall \delta > 0 \) \(\exists x_n, a_n \in I \) s.t.
\[|x_n - a_n| < \delta \text{ but } |f(x_n) - f(a_n)| \geq \epsilon. \]
Since \(I \) is bdd it has a convergent subseq \(\{x_{n_k}\} \), say \(a_{n_k} \to a \). Observe that \(a \in I \).

We claim that \(x_{n_k} \to a \). Let \(\epsilon > 0 \), then \(\exists K \in I \text{ s.t. } \forall k > K \)
\[|a_{n_k} - a| < \frac{\epsilon}{2} \text{ and } \forall k > K, \frac{1}{n_k} < \frac{1}{K} < \frac{\epsilon}{2}. \]

Thus for \(k > \max \{K, \frac{\epsilon}{2}\} \) we have
\[|x_{n_k} - a| \leq |x_{n_k} - a_{n_k}| + |a_{n_k} - a| < \frac{1}{n_k} + \frac{\epsilon}{2} < \epsilon. \]
So \(x_{n_k} \to a \). Thus by the continuity of \(f \), \(\lim f(x_{n_k}) = f(a) \)
and \(\lim f(x_{n_k}) = f(a) \) and so \(\lim |f(a_{n_k}) - f(x_{n_k})| = 0 \).
But this contradicts the requirement \(|f(a_{n_k}) - f(x_{n_k})| \geq \epsilon \).
Hence \(f \) is unif. cts. on \(I \).
Example: Show that \(f(x) = \frac{1}{x^2} \) is unif cts. on \([\frac{1}{100}, 1000]\).

By the above Theorem it suffices to show that \(f \) is cts on \(I = [\frac{1}{100}, 1000] \) since \(I \) is closed and bdd. But \(f \) is a rational function and thus it is cts on its domain.

Proposition: Let \(f \) be unif cts on \(D \). If \(\{x_n\}_n \) is Cauchy in \(D \) then \(\{f(x_n)\}_n \) is also Cauchy.

Proof: Let \(\{x_n\}_n \) be a Cauchy seq in \(D \) and let \(\varepsilon > 0 \) be given. Then since \(f \) is unif cts on \(D \), \(\exists \delta > 0 \) s.t. \(\forall x, y \in D, \|x - y\| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon \). Since \(\{x_n\}_n \) is Cauchy \(\exists N \) s.t. for all \(m, n > N \), \(|x_m - x_n| < \delta \). Hence, \(|f(x_m) - f(x_n)| < \varepsilon \) for all \(m, n > N \).

Note: Given \(f: D \to \mathbb{R} \). If \(\exists \) Cauchy seq \(\{x_n\}_n \) in \(D \) s.t.

\(\{f(x_n)\}_n \) is not Cauchy, then \(f \) is not unif cts.

Example: Show \(f: (0, \infty) \to \mathbb{R} \) given by \(f(x) = \frac{1}{x} \) is not unif cts.

Set \(x_n = \frac{1}{n} \) for \(n \in \mathbb{N} \), then \(\{x_n\}_n \) is Cauchy in \(D = (0, \infty) \) (since it converges); but since \(f(x_n) = n \) \(\forall f(x_n) \}_n \) is not Cauchy. Hence \(f \) is not unif cts on \(D \).

Note: For any \(b > 0 \), \(f(x) = \frac{1}{x} \) is unif cts on \([b, \infty)\). Let \(\varepsilon > 0 \), then setting \(\delta = b^2 \varepsilon \), we have for all \(x, a \in [b, \infty) \) with \(|x - a| < \delta \),

\[|f(x) - f(a)| = |\frac{1}{x} - \frac{1}{a}| = \frac{|x - a|}{|ax|} \leq \frac{|x - a|}{b^2} < \frac{\delta}{b^2} = \varepsilon. \]

So \(f \) is unif cts on \([b, \infty)\) as claimed.

Proposition: Let \(f \) be a cts fn on a bdd interval \(D = (a, b) \).

Then \(f \) can be extended to a cts function on \(\bar{D} = [a, b] \) iff \(f \) is unif cts on \(D \).

Proof: Follows immediately from the theorem.

Sketch of proof: \(\Rightarrow \) follows immediately from the theorem.

\(\Leftarrow \) Suppose \(f \) is unif cts on \(D \) and set \(\delta = \frac{b - a}{2} \) (note \(\delta > 0 \)).

Set \(x_n = a + \frac{\delta}{n} \). Then \(\{x_n\}_n \) is Cauchy in \(D \) and so by the above Proposition \(\{f(x_n)\}_n \) is also Cauchy and hence converges.

Similarly setting \(y_n = b - \frac{\delta}{n} \) for \(n \in \mathbb{N} \) yields another Cauchy seq. \(\{y_n\}_n \) in \(D \). So \(\{f(y_n)\}_n \) also converges.

We define \(\hat{f}: [a, b] \to \mathbb{R} \) by

\[\hat{f}(x) = \begin{cases} f(x) & \text{if } a < x < b \\ \lim f(x_n) & \text{if } x = a \\ \lim f(y_n) & \text{if } x = b. \end{cases} \]

Since \(\hat{f} \) agrees with \(f \) on \(D \) it is cts at all pts in \(D \).

An \(\varepsilon/2 \) argument shows that \(\hat{f} \) is cts at each end pt.