3.4 Uniform Convergence

What does it mean for a seq. of fn's \(\{f_n\}_n \) defined on \(D \) to converge to a function \(f: D \to \mathbb{R} \)? The simplest notion is to require that \(f_n(x) \to f(x) \) for all \(x \in D \).

Examples.

(a) Define \(f_n: [0,1] \to \mathbb{R} \) by \(f_n(x) = x^n \). Then if we define \(f: [0,1] \to \mathbb{R} \) by \(f(x) = \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{otherwise} \end{cases} \), we have \(f_n(x) \to f(x) \) for all \(x \in [0,1] \).

(b) Define \(g_n: [0,\infty) \to \mathbb{R} \) by \(g_n(x) = \frac{1}{n} 1_{x \leq \frac{1}{n}}
\)

Then setting \(g(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{otherwise} \end{cases} \), we have \(g_n(x) \to g(x) \) for all \(x \in [0,\infty) \).

(c) Define \(h_n: \mathbb{R} \to \mathbb{R} \) by \(h_n(x) = \begin{cases} -nx & x < 2/n \\ 0 & \text{otherwise} \end{cases} \).

Then \(h_n(x) \to 0 \) for all \(x \in \mathbb{R} \). To see this let \(\epsilon > 0 \).
then for all \(n > \frac{2}{\epsilon} \) we have \(h_n(x) = 0 \). If \(x \leq 0 \), then \(h_n(x) = 0 \) for all \(n \in \mathbb{N} \). So \(h_n(x) \to h(x) = 0 \) for all \(x \in \mathbb{R} \).

(d) Define \(k_n: [0,\infty) \to \mathbb{R} \) by \(k_n(x) = \frac{1}{x+n} \). Then for all \(x \in [0,\infty) \)

\(k_n(x) \to 0 \). To see this let \(\epsilon > 0 \). Then for \(n > \frac{1}{\epsilon} \) we have

\[|k_n(x) - 0| = \left| \frac{1}{x+n} \right| < \frac{1}{n} < \epsilon \]

Note that the limit functions in (a) and (b) are not cts even though the functions in the seqs. are.

Def: Let \(D \subseteq \mathbb{R} \), let \(\{f_n\}_n \) be a seq of fn's defined on \(D \) and let \(f \) be a fn defined on \(D \).

(a) Say \(\{f_n\}_n \) converges ptwise to \(f \) if \(\forall x \in D, \exists \eta \in \mathbb{N} \) st. \(\forall n \geq \eta, |f_n(x) - f(x)| < \epsilon \).

(b) Say \(\{f_n\}_n \) converges uniformly to \(f \) if \(\forall \epsilon > 0, \exists \eta \in \mathbb{N} \) st. \(\forall x \in D, \forall n \geq \eta, |f_n(x) - f(x)| < \epsilon \).

Notes: a) If \(f_n \to f \) uniformly, then \(f_n \to f \) pointwise.

b) \(\{f_n\}_n \) does not converge uniformly to \(f \) if \(\exists \epsilon > 0, \forall N \in \mathbb{N}, \exists x \in D, \forall n \geq N, |f_n(x) - f(x)| \geq \epsilon \).

c) In all four examples above convergence is pointwise but the convergence is uniform only in (d).

to see convergence is not uniform in (c). Set \(\epsilon = \frac{1}{2} \) and let \(N \) be given. Let \(n > N \) and set \(x = \frac{1}{2n} \). Then \(h_n(x) = h(\frac{1}{2n}) = \frac{1}{2} \).

So \(|h_n(x) - h(x)| = |\frac{1}{2} - 0| = \frac{1}{2} \geq \epsilon \).

To see that \(k_n \) is unif. on \(D \). Let \(\epsilon > 0 \), then for \(n > \frac{1}{\epsilon} \)

we have \(|k_n(x) - 0| = \left| \frac{1}{x+n} \right| < \frac{1}{n} < \epsilon \) for all \(x \in [0,\infty) \).

So \(k_n \to 0 \) unif. on \(D \).
Theorem: Let \(\{ f_n \}_{n=1}^{\infty} \) be a seq. of cts fns def on \(D \) and Sps that \(f_n \to f \) unit to \(f: D \to \mathbb{R} \). Then \(f \) is cts.

Proof: Let \(x_0 \in D \) and let \(\varepsilon > 0 \). Since \(f_n \to f \) unit on \(D \), there exists an N s.t. \(\forall x \in D, n > N, |f_n(x) - f(x)| < \frac{\varepsilon}{3} \). Let \(m > N \). Then since \(f_n \) is cts, \(\exists \delta > 0 \) s.t. \(\forall x \in D, |x - x_0| < \delta \Rightarrow |f_n(x) - f(x_0)| < \frac{\varepsilon}{3} \).

Then for \(x \in D \) s.t. \(|x - x_0| < \delta \) we have

\[
|f(x) - f(x_0)|
\leq |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|
\]

\[
< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.
\]

Hence, \(f \) is cts at \(x_0 \). Since \(x_0 \) was chosen arbitrarily, \(f \) is cts.

Note: It follows by this theorem that convergence is not uniform in examples (a), (b) above since the limit functions are not continuous.

Prop: Let \(\{ f_n \}_{n=1}^{\infty} \) be a seq. of fns defined on \(D \) and let

\(f: D \to \mathbb{R} \) be given.

a) Sps \(\{ f_n \}_{n=1}^{\infty} \) in \(\mathbb{R} \) s.t. \(b_n \to 0 \) ad \(|f_n(x) - f(x)| \leq b_n \) for all \(x \in D, n \in \mathbb{N} \).

Then \(f_n \to f \) unit on \(D \).

b) \(f_n \to f \) unit on \(D \) iff \(\sup |f_n - f| \to 0 \)

Proof of (a): Let \(\varepsilon > 0 \). Then since \(b_n \to 0 \), \(\exists N \) s.t. \(b_n < \frac{\varepsilon}{3} \) for all \(n > N \).

Then for all \(x \in D \) and \(n > N \) we have \(|f_n(x) - f(x)| < b_n < \varepsilon \).

Hence \(f_n \to f \) unit.

Ex: This gives an easy proof that the convergence \(f_n \to f \) above is uniform by taking \(b_n = \frac{1}{n} \).

Def: Let \(\{ f_n \}_{n=1}^{\infty} \) be a seq. of fns def on \(D \subset \mathbb{R} \). We say that \(\{ f_n \}_{n=1}^{\infty} \) is unit Cauchy on \(D \) if \(\forall \varepsilon > 0, \exists N \) s.t.

\(\forall x \in D, \forall m, n > N, |f_m(x) - f_n(x)| < \varepsilon \).

Prop: Let \(\{ f_n \}_{n=1}^{\infty} \) be a seq. of fns def on \(D \subset \mathbb{R} \). Then \(\{ f_n \}_{n=1}^{\infty} \) is unit Cauchy iff \(\{ f_n \}_{n=1}^{\infty} \) converges unit to \(f \) on \(D \).