1. Prove that
\[\lim_{n \to \infty} \frac{\cos n^2}{\sqrt{n}} = 0. \]

We apply Theorem 2.3.2 with \(a_n = 1/\sqrt{n} \) and \(b_n = \cos n^2 \). Since \(|b_n| = |\cos n^2| \leq 1 \) for all \(n \), \(\{b_n\}_n \) is bounded. Moreover, \(a_n = 1/\sqrt{n} \to 0 \) (by Theorem 2.3.6(f)). Therefore by Theorem 2.3.2, \(\frac{\cos n^2}{\sqrt{n}} = a_n b_n \to 0. \)

2. Let \(\{a_n\}_n \) and \(\{b_n\}_n \) be sequences of positive numbers. Suppose that \(a_n \to \infty \) and that there exist positive constants \(N, \varepsilon \) such that \(b_n \geq \varepsilon \) for all \(n > N \). Prove that \(a_n b_n \to \infty \). (Please don’t use Theorem 2.4.7(e).)

Let \(M > 0 \). Then since \(a_n \to \infty \), there is \(N_1 \) such that \(a_n > M/\varepsilon \) for all \(n > N_1 \). Hence for all \(n > N_2 = \max\{N, N_1\} \) we have \(b_n \geq \varepsilon \) and \(a_n > M/\varepsilon \). Therefore
\[a_n b_n \geq a_n \varepsilon > \frac{M}{\varepsilon} \varepsilon = M. \]

for all \(n > N_2 \) and so \(a_n b_n \to \infty. \)

3. Let \(\{a_n\}_n \) be a sequence of nonnegative numbers and let
\[s_n = \sum_{k=1}^{n} a_k \text{ for } n \geq 1. \]

Prove that either \(\{s_n\} \) converges or \(s_n \to \infty. \)

Since \(a_k \geq 0 \) for all \(k \), we have \(s_{n+1} = s_n + a_{n+1} \geq s_n \) for all \(n \). Hence, \(\{s_n\} \) is nondecreasing. Therefore by the Monotone Convergence Theorem, either \(\{s_n\} \) is bounded above and thus converges or it is not and so \(s_n \to \infty. \)

4. Prove that
\[\lim_{n \to \infty} \frac{4n^2 + 7}{3n^2 + 5} = \infty. \]

A straightforward calculation shows that
\[\frac{4n^2 + 7}{3n^2 + 5} = n \left(\frac{4 + 7/n^2}{3 + 5/n} \right). \]

Observe that \(a_n = n \to \infty \) and \(b_n = \frac{4 + 7/n^2}{3 + 5/n} \to \frac{4}{3} \) by the Main Limit Theorem (Theorem 2.3.6(a), (b), (d)). Set \(\varepsilon = 1 \); then since \(b_n \to 4/3 > \varepsilon \) there is \(N \) such that \(b_n \geq \varepsilon \) for all \(n > N \) by Theorem 2.2.3. Hence, by Exercise 2, \(a_n b_n \to \infty \) and so the desired result holds. (Note that one can also use the proposition proved in class that asserts: if \(a_n \to \infty \) and \(b_n \to b > 0 \), then \(a_n b_n \to \infty \).)

5. Let \(\{a_n\}_n \) be a sequence defined recursively by \(a_1 := 1 \) and \(a_{n+1} := \frac{1}{4}(2a_n + 3) \) for \(n \in \mathbb{N}. \)

a. Show that \(a_n \leq 2 \) for all \(n \in \mathbb{N}. \)

We prove this by induction. For the base case observe that \(a_1 = 1 \leq 2. \) Next suppose that \(a_n \leq 2 \) for some \(n \in \mathbb{N}. \) Then since \(2a_n + 3 \leq 7 \) we have
\[a_{n+1} = \frac{2a_n + 3}{4} \leq \frac{7}{4} \leq 2. \]

Hence, the desired result follows by induction.

b. Show that \(a_n \leq a_{n+1} \) for all \(n \in \mathbb{N}. \)

We prove this by induction. We have \(a_2 = 5/4 \geq 1 = a_1 \) and so the base case holds. Next suppose that \(a_n \leq a_{n+1} \) for some \(n \in \mathbb{N}. \) Then \(2a_n + 3 \leq 2a_{n+1} + 3 \) and so we have
\[a_{n+1} = \frac{2a_n + 3}{4} \leq \frac{2a_{n+1} + 3}{4} = a_{n+2}. \]

Hence, by induction we have \(a_n \leq a_{n+1} \) for all \(n \in \mathbb{N}. \)

5. Prove that \(\{a_n\}_n \) converges and find the limit.

By part (a) \(\{a_n\}_n \) is bounded above and by part (b) \(\{a_n\}_n \) is nondecreasing. Therefore \(\{a_n\}_n \) converges by the Monotone Convergence Theorem (Theorem 2.4.1). Let \(a \) denote the limit of \(\{a_n\}_n \). Then since \(a_{n+1} \to a \) we have by the Main Limit Theorem (Theorem 2.3.6(a), (b))
\[a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{4}(2a_n + 3) = \frac{1}{4} \left(2 \lim_{n \to \infty} a_n + \lim_{n \to \infty} 3 \right) = \frac{1}{4}(2a + 3). \]

Hence, \(a = (2a + 3)/4 \) and so the limit is \(a = 3/2. \)