1. Let \(x \) be a real number with \(x \neq 1 \). Show that for all \(n \in \mathbb{N} \)
\[
1 + x + \cdots + x^n = \frac{1 - x^{n+1}}{1 - x}.
\]
2. Prove that \(1^2 + 3^2 + \cdots + (2n - 1)^2 = \frac{(4n^3 - n)}{3} \) for all \(n \in \mathbb{N} \).
3. Find the set of all natural numbers \(n \) for which \(2^n < 2^n \). Prove your answer is correct (induction may help).
4. Let \(S \) be a bounded nonempty set of real numbers and let \(a \in \mathbb{R} \).
 - a. Define \(a + S := \{ a + s : s \in S \} \). Prove that \(\sup(a + S) = a + \sup S \) and \(\inf(a + S) = a + \inf S \).
 - b. Suppose \(a \neq 0 \) and define \(aS := \{ ax : s \in S \} \). Prove that
 \[
 \sup aS = \begin{cases}
 a \sup S & \text{if } a > 0, \\
 a \inf S & \text{if } a < 0.
 \end{cases}
 \]
5. With \(f \) and \(A \) as given, find \(\sup_A f \) and \(\inf_A f \). Do \(\max_A f \) or \(\min_A f \) exist? If so find them.
6. Let \(a, b \in \mathbb{R} \) and suppose that for every \(\varepsilon > 0 \), \(a \leq b + \varepsilon \). Prove that \(a \leq b \).
7. Let \(S := (1, \infty) \cap \mathbb{Q} \). Prove that \(\sup S = \infty \) and \(\inf S = 1 \).
8. Suppose that \(S \) is a nonempty subset of \(\mathbb{R} \). Show that if there is an element \(u \in S \) which is an upper bound of \(S \), then \(u = \sup S \).
9. Let \(S := \{ 1 + \left(\frac{-1}{n+1} \right) : n \in \mathbb{N} \} \). Show that \(S \) is bounded and find \(\sup S \) and \(\inf S \).
10. Let \(S := \{ \frac{1}{n+1} - \frac{1}{n} : m, n \in \mathbb{N} \} \). Show that \(S \) is bounded and find \(\sup S \) and \(\inf S \).
11. Let \(x \in \mathbb{R} \) be given. Show that for every \(\varepsilon > 0 \) there is a rational number \(r \) such that \(|r - x| < \varepsilon \). Use this fact to show that there is a sequence of rational numbers which converges to \(x \).
12. Use the definition of the limit of a sequence to establish the following limit.
\[
\lim_{n \to \infty} \frac{3n - 4}{2n + 1} = \frac{3}{2}.
\]
13. Show that the sequence \(\{ \sqrt{n^2 + 2n} - n \} \) converges and find its limit (cite any theorems you use).
14. Show that the sequence \(\{ \ln(n^2 + 1) \} \) diverges to \(\infty \).
15. Let \(\{ a_n \} \) be a sequence of positive numbers. Use the definition to prove that if \(a_n \to \infty \), then \(\sqrt{a_n} \to \infty \).
16. Let \(\{ a_n \} \) be a sequence of real numbers and let \(m \in \mathbb{N} \). Define the sequence \(\{ b_n \} \) by \(b_n := a_{m+n} \). Prove that \(\{ a_n \} \) converges iff \(\{ b_n \} \) does. Prove that if either (and so both) converges, then they have the same limit.
17. Prove that
\[
\lim_{n \to \infty} \frac{3n^2 - 4}{2 - 3n} = -\infty.
\]
18. Use limit theorems (clearly cite the ones you use) to prove the sequence \(\{ x_n \} \) converges (and find its limit):
\[
x_n := \frac{n^2 - 5}{2n^2 + 3n + 4}.
\]
19. Suppose \(\{ a_n \} \) is a sequence of positive real numbers and that there is a number \(r \in (0, 1) \) such that \(a_{n+1} < ra_n^r \) for all \(n \in \mathbb{N} \). Use induction to show that \(a_{n+1} < a_1 r^n \) for all \(n \in \mathbb{N} \). Show that
\[
\lim_{n \to \infty} a_n = 0.
\]
20. Show that the sequence \(\{ a_n \} \) defined below converges and find its limit:
\[
a_n := \frac{n(2 + \cos n)}{n^2 + 1}.
\]
21. Let \(\{ a_n \} \) be a sequence defined recursively by \(a_1 := 0 \) and \(a_{n+1} = \sqrt{1 + a_n} \) for all \(n \in \mathbb{N} \). Prove that \(\{ a_n \} \) converges and find its limit.
22. Let \(\{ a_n \} \) be a sequence of nonnegative real numbers and let \(\{ b_n \} \) be a sequence such that \(b_{n+1} - b_n = a_n \) for all \(n \in \mathbb{N} \). Prove that \(\{ b_n \} \) converges if it is bounded above and diverges to \(\infty \) otherwise.
23. Suppose that \(a_n \to \infty \) and that \(\{ b_n \} \) is bounded above. Use the definition to prove that \(b_n - a_n \to -\infty \).
24. Suppose that \(\{ a_n \} \) is not bounded above. Prove that for every \(M, N > 0 \), there is \(n > N \) such that \(a_n > M \).
25. Use the definition to prove that \(\frac{1}{2}(2n - 5) \to \infty \).
26. Let \(\{ a_n \} \) be defined recursively by \(a_1 := 1 \) and \(a_{n+1} = a_n + 1/a_n \) for all \(n \in \mathbb{N} \). Does \(\{ a_n \} \) converge?
27. Let \(\{ a_n \} \) be defined recursively by \(a_1 := 7 \) and \(a_{n+1} = 2 - 1/a_n \) for all \(n \in \mathbb{N} \). Does \(\{ a_n \} \) converge?