10.2 Jordan Regions

10.2a - Def: Let \(E \subset \mathbb{R}^d \). Def \(X_E : \mathbb{R}^d \to \mathbb{R} \) by \(X_E(x) = \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{else.} \end{cases} \)

10.2b - Notation: Let \(E \subset \mathbb{R}^d \) be bdd. Then there is a rectangle \(R \subset \mathbb{R}^d \) s.t. \(E \subset R \) and we define \(V_R(E) = \int_R X_E(x) \, dV(x) \) and \(V_R(E) = \int_R X_E(x) \, dV(x) \). Note that \(R' \subset \mathbb{R}^d \) is another rectangle with \(E \subset R' \) we have \(V_{R'}(E) = V_{R''}(E) \) and \(V_{R''}(E) = V_{R'}(E) \). So we drop \(R \) and simply write \(V(E) \) and \(V(E) \).

10.2c - Def: Say that \(E \) is a Jordan region if \(V(E) = V(E) \) and write \(V(E) = V(E) \); \(V(E) \) is called the volume of \(E \).

10.2d - Notes:
(i) A bdd set \(E \subset \mathbb{R}^d \) is a Jordan region iff \(X_E \) is int. on some vect. \(R \subset \mathbb{R}^d \) with \(E \subset R \) (and therefore any such \(R \)). In this case, \(V(E) = \int_R X_E(x) \, dV(x) \).
(ii) Every rectangle \(R \) is itself a Jordan region and its \(R = [a_1, b_1] \times \cdots \times [a_d, b_d] \), \(V(R) = (b_1 - a_1)(b_2 - a_2) \cdots (b_d - a_d) \) as before.
(iii) Sharp \(E, F \subset \mathbb{R}^d \) are Jordan regions with \(E \subset F \), then \(V(E) \leq V(F) \).
(iv) Let \(E \subset \mathbb{R}^d \) be bdd. If \(V(E) = 0 \), then \(E \) is a Jordan region and \(V(E) = 0 \).
(v) Sharp \(E, F \subset \mathbb{R}^d \) are bdd. If \(E \subset F \) and \(V(F) = 0 \), then \(V(E) = 0 \) and \(E \) is Jordan.
(vi) Sharp \(E, F \subset \mathbb{R}^d \) are bdd. If \(V(E) = V(F) = 0 \), then \(V(E \cup F) = 0 \) and \(E \cup F \) is Jordan.

10.2e - Def: Let \(E \subset \mathbb{R}^d \) be bdd. If \(V(E) = 0 \), then \(E \) has volume 0.

Note that by 10.1 (iv) if \(E \) has Vol. 0, then \(E \) is a Jordan region and \(V(E) = 0 \).

10.2f - Prop: Let \(E, F \subset \mathbb{R}^d \) st. \(E, F, E \cap F \) are Jordan regions. Then \(E \cap F \) is a Jordan region and \(V(E \cap F) = V(E) + V(F) - V(E \cap F) \).

10.2g - Prop: Let \(E \subset \mathbb{R}^d \) be bdd. Then \(E \) has Vol. 0 if \(\forall \varepsilon > 0 \exists \) rects. \(R_1, \ldots, R_n \)

st. \(E \subset R_1 \cup \cdots \cup R_n \) and \(\sum_i V(R_i) < \varepsilon \).

10.2h - Lemma: Let \(E \subset \mathbb{R}^d \) be bdd. Then \(V(E) = V(E) \) and \(V(E) = V(E) \).

pf: We verify (i). Since \(E \subset E \), \(V(E) \leq V(E) \) so we must show \(V(E) = V(E) \).

Then \(U(X_E, E) = \sum_i V(R_i) = V(F) \). Since \(F \) is closed \(E \subset F \) and \(V(F) = V(F) \).

Hence \(V(E) = \inf \{ u(X_E, E) : F \subset E \} \). A similar argument works to show (ii) holds.

10.2i - Theorem: If \(E \subset \mathbb{R}^d \) is Jordan, then \(E^0 \) and \(\bar{E} \) are Jordan and \(V(E^0) = V(E) = V(E) \).

pf: If \(E \) is Jordan, \(V(E) = V(E^0) \leq V(E) \) and \(V(E) = V(E) \).

10.2j - Theorem: Let \(E \subset \mathbb{R}^d \) be bdd. Then \(E \) is Jordan iff \(\partial E \) has Vol. 0.

pf: Observe that \(E \) is Jordan iff \(V(E^0) = V(E) \). Let \(R \) be a rect. st. \(E \subset R \) and let \(P \) be a partition of \(R \), then \(U(X_E, E) = U(X_E, P) - L(X_E, P) \). Sharp \(E \) is Jordan, \(\exists \) seq. of parts \(P_n \in P \) st. \(U(X_E, P_n) - L(X_E, P_n) \to 0 \) so \(U(X_E, P_n) \to 0 \).

Then \(V(\partial E) = 0 \). The converse is proved similarly.

10.2k - Cor: Sharp \(E, F \subset \mathbb{R}^d \) are Jordan regions. Then \(E \cup F, E \cap F \), and \(E \setminus F \) are all Jordan regions also.

pf: Note that the body of each of these is contained in \(2E \).