Compact sets play a critical role in Analysis (and other areas of math). The Heine-Borel Theorem asserts that a set \(K \subset \mathbb{R}^d \) is bounded iff \(K \) is closed and bounded. The definition is a bit abstract.

7.4a - Def: Let \(E \subset \mathbb{R}^d \) and let \(\mathcal{U} \) be a collection of open sets in \(\mathbb{R}^d \). We say that \(\mathcal{U} \) is an open cover of \(E \) if \(\forall x \in E \), \(\exists U \in \mathcal{U} \) s.t. \(x \in U \). (i.e. \(E \subset \bigcup_{U \in \mathcal{U}} U \)). A subset of \(\mathcal{U} \) which is also a cover is called a subcover and it is called a finite subcover if it is finite.

7.4b - Ex: Let \(E = [0,1] \subset \mathbb{R} \) and \(\mathcal{U} = \{ B_{1/2}(a) : a \in \mathbb{R} \} \). Then \(\mathcal{U} \) is an open cover of \(E \). \(\mathcal{V} = \{ B_{1/3}(a) : a \in \mathbb{R} \} \) is a subcover. Moreover, \(W_1 = \{ B_{1/3}(0), B_{1/3}(1/2), B_{1/3}(1) \} \) and \(W_2 = \{ B_{1/3}(1/4), B_{1/3}(3/4) \} \) are both finite subcovers.

7.4c - Def: Let \(K \subset \mathbb{R}^d \). Then \(K \) is said to be compact if every open cover has a finite subcover. That is, \(K \) is compact if given an open cover \(\mathcal{U} \), there are \(U_1, \ldots, U_n \in \mathcal{U} \) s.t. \(K \subset U_1 \cup \cdots \cup U_n \).

7.4d - Def: A set \(E \subset \mathbb{R}^d \) is said to be bounded if \(\exists M > 0 \) s.t. \(\forall x \in E \), \(\| x \| < M \).

7.4e - Lemma: Suppose \(K \subset \mathbb{R}^d \) is compact. Then \(K \) is closed and bounded.

pf: Observe that \(U = \bigcup_{m \in N} \bigcup_{n \in N} B_m(0) \) is an open cover of \(K \). Since \(K \) is compact, \(\exists m_1, \ldots, m_N \in N \) s.t. \(K \subset \bigcup_{m \in \{m_1, \ldots, m_N\}} B_m(0) \). Set \(r = \max\{m_1, \ldots, m_N\} \).

Then \(B_r(0) \subset B_m(0) \) for \(m = 1, \ldots, N \). So \(K \subset \bigcup_{m = 1}^{N} B_m(0) \) and so \(\| x \| < r \) for all \(x \in K \). Hence, \(K \) is bounded.

Now suppose \(K \) is not closed. Then \(\exists x \in K \) s.t. \(x \notin K \). For \(n \in N \), set \(U_n = B_n(x) \). Then \(K \subset \bigcup_{n \in N} U_n \) and so \(\mathcal{U} = \{ U_n : n \in N \} \) is an open cover of \(K \). Since \(K \) is compact, \(\exists m_1, \ldots, m_N \in N \) s.t. \(K \subset \bigcup_{n = 1}^{N} U_{m_n} \). We may assume \(m_1 < m_2 < \cdots < m_N \). Since \(U_{m_1} \subset U_{m_2} \subset \cdots \subset U_{m_N} \), we have \(K \subset U_{m_N} \).

Hence \(K \cap B_{m_N}(x) = \emptyset \) and so \(x \notin K \). This contradicts our assumption that \(x \in K \) and thus \(K \) is closed.

7.4f - Lemma [7.4.6]: Let \(\{ E_n \}_{n \in N} \) be a seq of nonempty closed and bounded subsets of \(\mathbb{R}^d \) such that \(E_{n+1} \subset E_n \) for all \(n \). Then \(\bigcap_{n=1}^{\infty} E_n \neq \emptyset \).

pf: For each \(n \), choose \(x_n \in E_n \). Then since \(x_n \in E_n \) for all \(n \), and \(E_1 \) is bounded, the seq \(\{ x_n \}_{n \in N} \) is bounded. Hence by BWT (7.2e or [7.2.14]), \(\{ x_n \}_{n \in N} \) has a convergent subseq \(\{ x_{n_k} \}_{k \in N} \). We claim that \(x_0 = \lim x_{n_k} \in E_n \) for each \(n \). Let \(n \in N \); then \(n_k \geq n \) for \(k \) suff large. Since \(E_n \) is closed, \(x_0 \in E_n \). Therefore, \(\bigcap_{n=1}^{\infty} E_n \neq \emptyset \).

7.4g Heine-Borel Theorem [7.4.7]

Let \(K \subset \mathbb{R}^d \). Then \(K \) is compact iff \(K \) is closed and bounded.

pf: \(\Rightarrow \) This implication follows from 7.4e.

\(\Leftarrow \) Suppose that \(K \) is closed and bounded, but not compact. Then there is an open cover of \(K \) with no finite subcover. Since \(K \) is bounded, there is a closed d-cube \(C_0 = [-L/2, L/2]^d \), s.t. \(K \subset C_0 \). We subdivide \(C_0 \) into \(2^d \) closed cubes of side length \(L/2 \), \(2C_0^3 \). Each \(K \cap C_0^3 \) is covered by \(U \) and \(\mathcal{V} \) s.t. \(K \cap C_0^3 \) does not have a finite subcover. Denote one such by \(C_1 \). (ctd.)
7.4 continued

Continue inductively to find a nested sequence of closed subcubes \(\mathcal{C}_n \) s.t. \(\mathcal{C}_{n+1} \subset \mathcal{C}_n \), \(\mathcal{C}_n \) has side length \(1/2^n \) and \(K \cap \mathcal{C}_n \) does not have a finite subcover. By Lemma 7.4f, \(\cap_{n=1}^{\infty} K \cap \mathcal{C}_n \neq \emptyset \) (note \(K \cap \mathcal{C}_{n+1} \subseteq K \cap \mathcal{C}_n \) and \(K \cap \mathcal{C}_n \) is closed). Let \(x \in \cap_{n=1}^{\infty} K \cap \mathcal{C}_n \). Since \(U \) is an open cover of \(K \), \(x \in U \) for some \(U \in U \). Since \(U \) is open, \(\exists r > 0 \) s.t. \(B_r(x) \subset U \). Choose \(n \in \mathbb{N} \) s.t. \(\frac{L}{2^n} < r \). Since \(x \in \mathcal{C}_n \) and \(\|x - y\| \leq \frac{L}{2^n} \) for any \(y \in \mathcal{C}_n \), \(\mathcal{C}_n \subseteq U \). So \(\cap_{n=1}^{\infty} K \cap \mathcal{C}_n \) is a finite subcover of \(K \cap \mathcal{C}_n \). This results in a contradiction and we conclude that \(K \) must be compact. \(\square \)

7.4h Cor: Let \(K \subset \mathbb{R}^d \) be compact and let \(F \subset K \) be closed. Then \(F \) is also compact.

Pf: This follows immediately from HBT (7.4g) and the fact that any subset of a bdd set must also be bdd. \(\square \)

7.4i Cor: Let \(K_1, \ldots, K_n \subset \mathbb{R}^d \) be compact sets. Then \(K_1 \cup \cdots \cup K_n \) and \(K_1 \cap \cdots \cap K_n \) are both compact.

Pf: By HBT (7.4g), \(K_1, \ldots, K_n \) are closed and bdd. By 7.3g, \(K_1 \cup \cdots \cup K_n \) and \(K_1 \cap \cdots \cap K_n \) are closed. Since \(K_1, \ldots, K_n \) are bdd, \(\exists M_1, \ldots, M_n > 0 \) s.t. \(\forall i, x \in K_i, \|x\| \leq M_i \). So if we set \(M = \max \{M_1, \ldots, M_n\} \), then for any \(x \in K_1 \cup \cdots \cup K_n, \|x\| \leq M \) and similarly \(\forall x \in K_1 \cap \cdots \cap K_n, \|x\| \leq M \). So both \(K_1 \cup \cdots \cup K_n \) and \(K_1 \cap \cdots \cap K_n \) are bdd. Hence by HBT (7.4g) both \(K_1 \cup \cdots \cup K_n \) and \(K_1 \cap \cdots \cap K_n \) are compact.

7.4j - Ex: Let \(x \in \mathbb{R}^d \) and \(r > 0 \), then \(B_r(x) \) is compact since it is closed (by 7.3d') and bdd (\(\forall y \in B_r(x), \|y\| \leq \|y - x\| + \|x\| \leq r + \|x\| \)).

7.4k - Theorem: Suppose \(K \subset \mathbb{R}^d \) with \(K \) compact and \(U \) open. Then \(\exists \) open set \(V \) s.t. \(K \subset V \subset \overline{V} \) and \(\overline{V} \) is compact.

Pf: \(\forall x \in K, \exists r > 0 \) s.t. \(B_{2r}(x) \subset U \). Hence \(B_{r}(x) \subset U \). Then setting \(U_x = B_{r}(x) \), \(U = \bigcup_{x \in K} U_x \) is an open cover of \(K \). Since \(K \) is compact, \(\exists x_1, \ldots, x_n \in K \) s.t. \(K \subset U_{x_1} \cup \cdots \cup U_{x_n} \). Set \(V = U_{x_1} \cup \cdots \cup U_{x_n} \). Then since \(U_x = B_{r}(x) \) is compact for each \(x \), the union \(U_{x_1} \cup \cdots \cup U_{x_n} \) is also compact (see 7.4i). Since \(\overline{V} = U_{x_1} \cup \cdots \cup U_{x_n} \) (by Exercise 7.3.9), and \(\overline{U_{x_i}} \subset C \subset U \) for each \(i \), \(\overline{V} \subset C \). \(\square \)